Efficacy of Drug Delivery Systems in Breast Cancer: A Meta-Analysis of Preclinical Animal Studies

Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers (Basel). 2021;13(17): 4287.

Article  PubMed  Google Scholar 

Shi X, Wang X, Yao W, et al. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther. 2024;9: 192.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wilkerson AD, Gentle CK, Ortega C, Al-Hilli Z. Disparities in breast cancer care—how factors related to prevention, diagnosis, and treatment drive inequity. Healthcare. 2024;12(4): 462.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Blake SJ, Yong MC, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 2016;6(12):1382–99.

Article  PubMed  CAS  Google Scholar 

Blomberg OS, Kos K, Spagnuolo L, Isaeva OI, Garner H, Wellenstein MD, Bakker N, Duits DE, Kersten K, Klarenbeek S, Hau CS. Neoadjuvant immune checkpoint blockade triggers persistent and systemic Treg activation which blunts therapeutic efficacy against metastatic spread of breast tumors. Oncoimmunology. 2023;12(1): 2201147.

Article  PubMed  PubMed Central  Google Scholar 

Anand U, Dey A, Chandel AKS, et al. Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022;10(4):1367–401.

Article  PubMed  PubMed Central  Google Scholar 

Basra M, Patel H, Biglione A. Intra-arterial chemotherapy in patients with metastatic breast cancer: a scoping review. Cureus. 2024;16(4):e58846.

PubMed  PubMed Central  Google Scholar 

Maia ALC, e Silva ATM, César ALA, et al. Preparation and characterization of gadolinium-based thermosensitive liposomes: a potential nanosystem for selective drug delivery to cancer cells. J Drug Deliv Sci Technol. 2021;65:102686.

Article  CAS  Google Scholar 

Govindaraju K, Vasantharaja R, Uma Suganya KS, et al. Unveiling the anticancer and antimycobacterial potentials of bioengineered gold nanoparticles. Process Biochem. 2020;96:213–9.

Article  CAS  Google Scholar 

Singh R, Kumar P. Disaccharide-polyethylenimine organic nanoparticles as non-toxic in vitro gene transporters and their anticancer potential. Bioorg Chem. 2021;112: 104918.

Article  PubMed  CAS  Google Scholar 

Tahir M, Fakhar-e-Alam M, Asif M, et al. Investigation of gadolinium doped manganese nano spinel ferrites via magnetic hypothermia therapy effect towards MCF-7 breast cancer. Heliyon. 2024;10:e24792.

Article  PubMed  PubMed Central  CAS  Google Scholar 

d’Avanzo N, Torrieri G, Figueiredo P, et al. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int J Pharm. 2021;597:120346.

Article  PubMed  Google Scholar 

Chowdhury N, Chaudhry S, Hall N, et al. Targeted delivery of doxorubicin liposomes for Her-2 + breast cancer treatment. AAPS PharmSciTech. 2020;21:202.

Article  PubMed  CAS  Google Scholar 

Farhoudi L, Hosseinikhah SM, Kazemi-Beydokhti A, Arabi L, Alavizadeh SH, Moosavian SA, Jaafari MR. Ph-sensitive polymeric micelles enhance the co-delivery of doxorubicin and docetaxel: an emerging modality for treating breast cancer. Cancer Nanotechnol. 2024;15(1):37.

Article  CAS  Google Scholar 

Liu F, Zhang C, Yang W, et al. Psoralen-loaded polymeric lipid nanoparticles combined with Paclitaxel for the treatment of triple-negative breast cancer. Nanomed (Lond). 2021;16(27):2411–30.

Article  CAS  Google Scholar 

Sahrayi H, Dehghan G, Montaseri H, et al. Co-delivery of letrozole and cyclophosphamide via folic acid-decorated nanoniosomes for breast cancer therapy: synergic effect, augmentation of cytotoxicity, and apoptosis gene expression. Pharmaceuticals. 2022;15(1):6.

Article  CAS  Google Scholar 

Guo H, Xu X, Zhang J, et al. The pivotal role of preclinical animal models in anti-cancer drug discovery and personalized cancer therapy strategies. Pharmaceuticals. 2024;17(8):1048.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Apostolou M, Fatokun AA, Assi S, Khan I. Targeted lipid-based drug delivery systems for lung cancer therapy. Appl Sci. 2024;14(15): 6759.

Article  CAS  Google Scholar 

Parhi R, Kaishap PP, Jena GK. Recent advances in nanomaterial-based drug delivery systems for melanoma therapy. ADMET DMPK. 2023;12(1):107–50.

PubMed  PubMed Central  Google Scholar 

Zhao Y, Yue P, Peng Y, Sun Y, Chen X, Zhao Z, Han B. Recent advances in drug delivery systems for targeting brain tumors. Drug Deliv. 2023;30(1):1–18.

Article  PubMed  PubMed Central  Google Scholar 

Sharifi-Azad M, Fathi M, Cho WC, et al. Recent advances in targeted drug delivery systems for resistant colorectal cancer. Cancer Cell Int. 2022;22:196.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted nanocarrier-based drug delivery strategies for improving the therapeutic efficacy of PARP inhibitors against ovarian cancer. Int J Mol Sci. 2024;25(15): 8304.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;29:372.

Google Scholar 

Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M. Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med ResMethodol. 2014;14:4.

Google Scholar 

Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.

Article  PubMed  PubMed Central  Google Scholar 

Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

Article  PubMed  Google Scholar 

Amini MA, Abbasi AZ, Cai P, Lip H, Gordijo CR, Li J, Chen B, Zhang L, Rauth AM, Wu XY. Combining tumor microenvironment modulating nanoparticles with doxorubicin to enhance chemotherapeutic efficacy and boost antitumor immunity. JNCI J Natl Cancer Inst. 2019;111(4):399–408.

Article  PubMed  Google Scholar 

Alibolandi M, Sadeghi F, Abnous K, Atyabi F, Ramezani M, Hadizadeh F. The chemotherapeutic potential of doxorubicin-loaded PEG-b-PLGA nanopolymersomes in mouse breast cancer model. Eur J Pharm Biopharm. 2015;94:521–31.

Article  PubMed  CAS  Google Scholar 

Amrahli M, Centelles M, Cressey P, Prusevicius M, Gedroyc W, Xu XY, So PW, Wright M, Thanou M. MR-labelled liposomes and focused ultrasound for spatiotemporally controlled drug release in triple negative breast cancers in mice. Nanotheranostics. 2021;5(2):125.

Article  PubMed  PubMed Central  Google Scholar 

Andisheh F, Oroojalian F, Shakour N, Ramezani M, Shamsara J, Khodaverdi E, Nassirli H, Hadizadeh F, Alibolandi M. Docetaxel encapsulation in nanoscale assembly micelles of folate-PEG-docetaxel conjugates for targeted fighting against metastatic breast cancer in vitro and in vivo. Int J Pharm. 2021;605: 120822.

Article  PubMed  CAS  Google Scholar 

Bahreyni A, Alibolandi M, Ramezani M, Sadeghi AS, Abnous K, Taghdisi SM. A novel MUC1 aptamer-modified PLGA-epirubicin-PβAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids and Surfaces B: Biointerfaces. 2019;175:231–8.

Article  PubMed  CAS  Google Scholar 

Bhattacharyya J, Bellucci JJ, Weitzhandler I, McDaniel JR, Spasojevic I, Li X, Lin CC, Chi JT, Chilkoti A. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms abraxane in multiple murine cancer models. Nat Commun. 2015;6(1): 7939.

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif