Bolhuis GK, Armstrong NA. Excipients for direct compaction–an update. Pharm Dev Technol. 2006;11(1):111–24. https://doi.org/10.1080/10837450500464255.
Article CAS PubMed Google Scholar
Pachuau L, Dutta RS, Roy PK, Kalita P, Lalhlenmawia H. Physicochemical and disintegrant properties of glutinous rice starch of Mizoram, India. Int J Biol Macromol. 2017;95:1298–304. https://doi.org/10.1016/j.ijbiomac.2016.11.029.
Article CAS PubMed Google Scholar
Borah PK, Deka SC, Duary RK. Effect of repeated cycled crystallization on digestibility and molecular structure of glutinous Bora rice starch. Food Chem. 2017;223:31–9. https://doi.org/10.1016/j.foodchem.2016.12.022.
Article CAS PubMed Google Scholar
Guo L, Zhang J, Hu J, Li X, Du X. Susceptibility of glutinous rice starch to digestive enzymes. Carbohydr Polym. 2015;128:154–62. https://doi.org/10.1016/j.carbpol.2015.04.008.
Article CAS PubMed Google Scholar
Yang L, Zhou Y, Wu Y, Meng X, Jiang Y, Zhang H, et al. Preparation and physicochemical properties of three types of modified glutinous rice starches. Carbohydr Polym. 2016;137:305–13. https://doi.org/10.1016/j.carbpol.2015.10.065.
Article CAS PubMed Google Scholar
Bertoft E. Chapter 2 - Analyzing starch molecular structure. In: Nilsson L, editor. Starch in food. 2nd ed. Woodhead; 2018;pp. 97–149.
Kittipongpatana OS, Kittipongpatana N. Preparation and physicomechanical properties of co-precipitated rice starch-colloidal silicon dioxide. Powder Technol. 2012;217:377–82. https://doi.org/10.1016/j.powtec.2011.10.051.
Laovachirasuwan P, Peerapattana J, Srijesdaruk V, Chitropas P, Otsuka M. The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloids Surf B Biointerfaces. 2010;78(1):30–5. https://doi.org/10.1016/j.colsurfb.2010.02.004.
Article CAS PubMed Google Scholar
Olayemi O, Oyi AR, Allagh TS. Comparative evaluation of maize, rice and wheat starch powders as pharmaceutical excipients. J Pharm Sci. 2008;7:131–8.
Amornrojvaravut C, Peerapattana J. Application of co-precipitated glutinous rice starch as a multifunctional excipient in direct compression tablets. Heliyon. 2023;9(9):e19904. https://doi.org/10.1016/j.heliyon.2023.e19904.
Article CAS PubMed PubMed Central Google Scholar
Herman J, Remon JP. Modified starches as hydrophilic matrices for controlled oral delivery. II. In vitro drug release evaluation of thermally modified starches. Int J Pharm. 1989;56(1):65–70. https://doi.org/10.1016/0378-5173(89)90061-6.
Nor Nadiha MZ, Fazilah A, Bhat R, Karim AA. Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chem. 2010;121(4):1053–9. https://doi.org/10.1016/j.foodchem.2010.01.048.
Ragheb AA, Abdel-Thalouth I, Tawfik S. Gelatinization of starch in aqueous alkaline solutions. Starch-Stärke. 1995;47(9):338–45. https://doi.org/10.1002/star.19950470904.
Rashid I, Al Omari MMH, Badwan AA. From native to multifunctional starch-based excipients designed for direct compression formulation. Starch-Stärke. 2013;65(7–8):552–71. https://doi.org/10.1002/star.201200297.
Olu-Owolabi B, Afolabi TA, Adebowale K. Effect of heat moisture treatment on the functional and tabletting properties of corn starch. Afr J Pharm Pharmacol. 2010;4:498–510.
Rashid I, Al-Remawi M, Leharne SA, Chowdhry BZ, Badwan A. A novel multifunctional pharmaceutical excipient: modification of the permeability of starch by processing with magnesium silicate. Int J Pharm. 2011;411(1–2):18–26. https://doi.org/10.1016/j.ijpharm.2011.03.011.
Article CAS PubMed Google Scholar
Han J-A, Lim S-T. Structural changes in corn starches during alkaline dissolution by vortexing. Carbohydr Polym. 2004;55(2):193–9. https://doi.org/10.1016/j.carbpol.2003.09.006.
Maher GG. Alkali gelatinization of starches. Starch-Stärke. 1983;35(7):226–34. https://doi.org/10.1002/star.19830350703.
Nagamine T, Komae K. Improvement of a method for chain-length distribution analysis of wheat amylopectin. J Chromatogr A. 1996;732(2):255–9. https://doi.org/10.1016/0021-9673(95)01229-X.
Palacios-Fonseca AJ, Castro-Rosas J, Gómez-Aldapa CA, Tovar-Benítez T, Millán-Malo BM, del Real A, et al. Effect of the alkaline and acid treatments on the physicochemical properties of corn starch. CyTA. 2013;11(sup1):67–74. https://doi.org/10.1080/19476337.2012.761651.
Alcázar-Alay SC, Meireles MAA. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology (Campinas). 2015;35:215–36.
Lee JH, Han J-A, Lim S-T. Effect of pH on aqueous structure of maize starches analyzed by HPSEC-MALLS-RI system. Food Hydrocolloids. 2009;23(7):1935–9. https://doi.org/10.1016/j.foodhyd.2008.12.007.
Ilić I, Govedarica B, Šibanc R, Dreu R, Srčič S. Deformation properties of pharmaceutical excipients determined using an in-die and out-die method. Int J Pharm. 2013;446(1):6–15. https://doi.org/10.1016/j.ijpharm.2013.02.001.
Article CAS PubMed Google Scholar
Li XH, Zhao LJ, Ruan KP, Feng Y, Xu DS, Ruan KF. The application of factor analysis to evaluate deforming behaviors of directly compressed powders. Powder Technol. 2013;247:47–54. https://doi.org/10.1016/j.powtec.2013.06.040.
Odeku OA, Itiola OA. Compaction properties of three types of starch. Iran J Pharm Res. 2010;6(1):17–23. https://doi.org/10.22037/ijpr.2010.694.
Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. Greyslake, IL: Washington, DC: Pharmaceutical; 2009.
Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009;6(2):197–208. https://doi.org/10.1517/17425240802708978.
Article CAS PubMed Google Scholar
Li J, Lin X, Wu F, Shen L, Wang Y, Feng Y. Application of the central composite design to optimize the calcium carbonate-HPMC co-processed excipient prepared by co-spray drying. RSC Adv. 2015;5(114):94105–14. https://doi.org/10.1039/C5RA15941E.
Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic design of experiments. Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22(1):27–105.
Article CAS PubMed Google Scholar
Sahoo P, Barman TK. 5 - ANN modelling of fractal dimension in machining. In: Davim JP, editor. Mechatronics and manufacturing engineering. Woodhead Publishing; 2012;pp. 159–226.
Wu B. Chapter 2 - Technical background. In: Wu B, editor. Reliability analysis of dynamic systems. Oxford: Academic; 2013. pp. 25–41.
Peerapattana J, Phuvarit P, Srijesdaruk V, Preechagoon D, Tattawasart A. Pregelatinized glutinous rice starch as a sustained release agent for tablet preparations. Carbohydr Polym. 2010;80(2):453–9. https://doi.org/10.1016/j.carbpol.2009.12.006.
Sadhukhan B, Mondal NK, Chattoraj S. Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto lemna major. Karbala Int J Mod Sci. 2016;2(3):145–55. https://doi.org/10.1016/j.kijoms.2016.03.005.
Peerapattana J, Ngamsupsiri T, Cheucharoenvasuchai N, Saikaew C. Optimization of metronidazole sustained-release films using D-optimal design. Int J Pharm. 2015;484(1):1–7. https://doi.org/10.1016/j.ijpharm.2015.02.019.
Article CAS PubMed Google Scholar
Tharanon W, Peerapattana J. The effects of ball mill processing on the physicochemical properties of glutinous rice starch. Thai J Pharm Sci. 2020;44(2):91–8.
Comments (0)