Enhancing Flowability and Compactibility of Glutinous Rice Starch Through Co-Precipitation: A Central Composite Design Approach

Bolhuis GK, Armstrong NA. Excipients for direct compaction–an update. Pharm Dev Technol. 2006;11(1):111–24. https://doi.org/10.1080/10837450500464255.

Article  CAS  PubMed  Google Scholar 

Pachuau L, Dutta RS, Roy PK, Kalita P, Lalhlenmawia H. Physicochemical and disintegrant properties of glutinous rice starch of Mizoram, India. Int J Biol Macromol. 2017;95:1298–304. https://doi.org/10.1016/j.ijbiomac.2016.11.029.

Article  CAS  PubMed  Google Scholar 

Borah PK, Deka SC, Duary RK. Effect of repeated cycled crystallization on digestibility and molecular structure of glutinous Bora rice starch. Food Chem. 2017;223:31–9. https://doi.org/10.1016/j.foodchem.2016.12.022.

Article  CAS  PubMed  Google Scholar 

Guo L, Zhang J, Hu J, Li X, Du X. Susceptibility of glutinous rice starch to digestive enzymes. Carbohydr Polym. 2015;128:154–62. https://doi.org/10.1016/j.carbpol.2015.04.008.

Article  CAS  PubMed  Google Scholar 

Yang L, Zhou Y, Wu Y, Meng X, Jiang Y, Zhang H, et al. Preparation and physicochemical properties of three types of modified glutinous rice starches. Carbohydr Polym. 2016;137:305–13. https://doi.org/10.1016/j.carbpol.2015.10.065.

Article  CAS  PubMed  Google Scholar 

Bertoft E. Chapter 2 - Analyzing starch molecular structure. In: Nilsson L, editor. Starch in food. 2nd ed. Woodhead; 2018;pp. 97–149.

Kittipongpatana OS, Kittipongpatana N. Preparation and physicomechanical properties of co-precipitated rice starch-colloidal silicon dioxide. Powder Technol. 2012;217:377–82. https://doi.org/10.1016/j.powtec.2011.10.051.

Article  CAS  Google Scholar 

Laovachirasuwan P, Peerapattana J, Srijesdaruk V, Chitropas P, Otsuka M. The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloids Surf B Biointerfaces. 2010;78(1):30–5. https://doi.org/10.1016/j.colsurfb.2010.02.004.

Article  CAS  PubMed  Google Scholar 

Olayemi O, Oyi AR, Allagh TS. Comparative evaluation of maize, rice and wheat starch powders as pharmaceutical excipients. J Pharm Sci. 2008;7:131–8.

Google Scholar 

Amornrojvaravut C, Peerapattana J. Application of co-precipitated glutinous rice starch as a multifunctional excipient in direct compression tablets. Heliyon. 2023;9(9):e19904. https://doi.org/10.1016/j.heliyon.2023.e19904.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herman J, Remon JP. Modified starches as hydrophilic matrices for controlled oral delivery. II. In vitro drug release evaluation of thermally modified starches. Int J Pharm. 1989;56(1):65–70. https://doi.org/10.1016/0378-5173(89)90061-6.

Article  CAS  Google Scholar 

Nor Nadiha MZ, Fazilah A, Bhat R, Karim AA. Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chem. 2010;121(4):1053–9. https://doi.org/10.1016/j.foodchem.2010.01.048.

Article  CAS  Google Scholar 

Ragheb AA, Abdel-Thalouth I, Tawfik S. Gelatinization of starch in aqueous alkaline solutions. Starch-Stärke. 1995;47(9):338–45. https://doi.org/10.1002/star.19950470904.

Article  CAS  Google Scholar 

Rashid I, Al Omari MMH, Badwan AA. From native to multifunctional starch-based excipients designed for direct compression formulation. Starch-Stärke. 2013;65(7–8):552–71. https://doi.org/10.1002/star.201200297.

Article  CAS  Google Scholar 

Olu-Owolabi B, Afolabi TA, Adebowale K. Effect of heat moisture treatment on the functional and tabletting properties of corn starch. Afr J Pharm Pharmacol. 2010;4:498–510.

Rashid I, Al-Remawi M, Leharne SA, Chowdhry BZ, Badwan A. A novel multifunctional pharmaceutical excipient: modification of the permeability of starch by processing with magnesium silicate. Int J Pharm. 2011;411(1–2):18–26. https://doi.org/10.1016/j.ijpharm.2011.03.011.

Article  CAS  PubMed  Google Scholar 

Han J-A, Lim S-T. Structural changes in corn starches during alkaline dissolution by vortexing. Carbohydr Polym. 2004;55(2):193–9. https://doi.org/10.1016/j.carbpol.2003.09.006.

Article  CAS  Google Scholar 

Maher GG. Alkali gelatinization of starches. Starch-Stärke. 1983;35(7):226–34. https://doi.org/10.1002/star.19830350703.

Article  CAS  Google Scholar 

Nagamine T, Komae K. Improvement of a method for chain-length distribution analysis of wheat amylopectin. J Chromatogr A. 1996;732(2):255–9. https://doi.org/10.1016/0021-9673(95)01229-X.

Article  CAS  Google Scholar 

Palacios-Fonseca AJ, Castro-Rosas J, Gómez-Aldapa CA, Tovar-Benítez T, Millán-Malo BM, del Real A, et al. Effect of the alkaline and acid treatments on the physicochemical properties of corn starch. CyTA. 2013;11(sup1):67–74. https://doi.org/10.1080/19476337.2012.761651.

Article  CAS  Google Scholar 

Alcázar-Alay SC, Meireles MAA. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology (Campinas). 2015;35:215–36.

Article  Google Scholar 

Lee JH, Han J-A, Lim S-T. Effect of pH on aqueous structure of maize starches analyzed by HPSEC-MALLS-RI system. Food Hydrocolloids. 2009;23(7):1935–9. https://doi.org/10.1016/j.foodhyd.2008.12.007.

Article  CAS  Google Scholar 

Ilić I, Govedarica B, Šibanc R, Dreu R, Srčič S. Deformation properties of pharmaceutical excipients determined using an in-die and out-die method. Int J Pharm. 2013;446(1):6–15. https://doi.org/10.1016/j.ijpharm.2013.02.001.

Article  CAS  PubMed  Google Scholar 

Li XH, Zhao LJ, Ruan KP, Feng Y, Xu DS, Ruan KF. The application of factor analysis to evaluate deforming behaviors of directly compressed powders. Powder Technol. 2013;247:47–54. https://doi.org/10.1016/j.powtec.2013.06.040.

Article  CAS  Google Scholar 

Odeku OA, Itiola OA. Compaction properties of three types of starch. Iran J Pharm Res. 2010;6(1):17–23. https://doi.org/10.22037/ijpr.2010.694.

Article  Google Scholar 

Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. Greyslake, IL: Washington, DC: Pharmaceutical; 2009.

Google Scholar 

Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009;6(2):197–208. https://doi.org/10.1517/17425240802708978.

Article  CAS  PubMed  Google Scholar 

Li J, Lin X, Wu F, Shen L, Wang Y, Feng Y. Application of the central composite design to optimize the calcium carbonate-HPMC co-processed excipient prepared by co-spray drying. RSC Adv. 2015;5(114):94105–14. https://doi.org/10.1039/C5RA15941E.

Article  CAS  Google Scholar 

Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic design of experiments. Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22(1):27–105.

Article  CAS  PubMed  Google Scholar 

Sahoo P, Barman TK. 5 - ANN modelling of fractal dimension in machining. In: Davim JP, editor. Mechatronics and manufacturing engineering. Woodhead Publishing; 2012;pp. 159–226.

Wu B. Chapter 2 - Technical background. In: Wu B, editor. Reliability analysis of dynamic systems. Oxford: Academic; 2013. pp. 25–41.

Chapter  Google Scholar 

Peerapattana J, Phuvarit P, Srijesdaruk V, Preechagoon D, Tattawasart A. Pregelatinized glutinous rice starch as a sustained release agent for tablet preparations. Carbohydr Polym. 2010;80(2):453–9. https://doi.org/10.1016/j.carbpol.2009.12.006.

Article  CAS  Google Scholar 

Sadhukhan B, Mondal NK, Chattoraj S. Optimisation using central composite design (CCD) and the desirability function for sorption of methylene blue from aqueous solution onto lemna major. Karbala Int J Mod Sci. 2016;2(3):145–55. https://doi.org/10.1016/j.kijoms.2016.03.005.

Article  Google Scholar 

Peerapattana J, Ngamsupsiri T, Cheucharoenvasuchai N, Saikaew C. Optimization of metronidazole sustained-release films using D-optimal design. Int J Pharm. 2015;484(1):1–7. https://doi.org/10.1016/j.ijpharm.2015.02.019.

Article  CAS  PubMed  Google Scholar 

Tharanon W, Peerapattana J. The effects of ball mill processing on the physicochemical properties of glutinous rice starch. Thai J Pharm Sci. 2020;44(2):91–8.

Article  CAS 

Comments (0)

No login
gif