Pierre N, et al. Proteomics highlights common and distinct pathophysiological processes associated with ileal and colonic ulcers in Crohn’s disease. J Crohns Colitis. 2020;14(2):205–15.
Bewtra M, Kaiser LM, TenHave T, Lewis JD. Crohn’s disease and ulcerative colitis are associated with elevated standardized mortality ratios: a meta-analysis. Inflamm Bowel Dis. 2013;19(3):599–613.
Fragoulis GE, Liava C, Daoussis D, Akriviadis E, Garyfallos A, Dimitroulas T. Inflammatory bowel diseases and spondyloarthropathies: from pathogenesis to treatment. World J Gastroenterol. 2019;25(18):2162.
Article CAS PubMed PubMed Central Google Scholar
Sardou HS, Abbaspour M, Akhgari A, Kesharwani P, Sahebkar A. Colon-targeted delivery systems of Budesonide as second-line therapy in inflammatory bowel disease. J Drug Deliv Sci Technol. 2024;93: 105472. https://doi.org/10.1016/j.jddst.2024.105472.
Hajjafari A, et al. Exploring the integration of nanotechnology in the development and application of biosensors for enhanced detection and monitoring of colorectal cancer. Inorg Chem Commun. 2024;164: 112409. https://doi.org/10.1016/j.inoche.2024.112409
Sadr S, et al. Challenges and prospective of enhancing hydatid cyst chemotherapy by nanotechnology and the future of nanobiosensors for diagnosis. Trop Med Infect Dis. 2023;8(11): 494.
Article PubMed PubMed Central Google Scholar
Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116(9):5338–431.
Article CAS PubMed Google Scholar
Sardou HS, et al. Comparison of 5-ASA layered or matrix pellets coated with a combination of ethylcellulose and eudragits L and s in the treatment of ulcerative colitis in rats. Int J Pharm. 2023;640: 122981. https://doi.org/10.1016/j.ijpharm.2023.122981.
Article CAS PubMed Google Scholar
Sardou HS, Vosough PR, Abbaspour M, Akhgari A, Kesharwani P, Sahebkar A. Colon delivery of Resveratrol for the treatment of inflammatory bowel disease. J Drug Deliv Sci Technol. 2024;92: 105315. https://doi.org/10.1016/j.jddst.2023.105315.
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–63.
Article CAS PubMed PubMed Central Google Scholar
Patra JK, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:1–33.
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1): 7.
Article PubMed PubMed Central Google Scholar
Beiranvand M. A review of the biological and pharmacological activities of mesalazine or 5-aminosalicylic acid (5-ASA): an anti-ulcer and anti-oxidant drug. Inflammopharmacology. 2021;29(5):1279–90.
Article CAS PubMed Google Scholar
Le Berre C, Roda G, Nedeljkovic Protic M, Danese S, Peyrin-Biroulet L. Modern use of 5-aminosalicylic acid compounds for ulcerative colitis. Expert Opin Biol Ther. 2020;20(4):363–78.
Nielsen OH, Munck LK. Drug insight: aminosalicylates for the treatment of IBD. Nat Clin Pract Gastroenterol Hepatol. 2007;4(3):160–70.
Article CAS PubMed Google Scholar
Park J, Cheon JH. Updates on conventional therapies for inflammatory bowel diseases: 5-aminosalicylates, corticosteroids, immunomodulators, and anti-TNF-α. Korean J Intern Med. 2022;37(5):895.
Article CAS PubMed PubMed Central Google Scholar
Qiu X, Ma J, Wang K, Zhang H. Chemopreventive effects of 5-aminosalicylic acid on inflammatory bowel disease-associated colorectal cancer and dysplasia: a systematic review with meta-analysis. Oncotarget. 2017;8(1):1031.
Dubey P, Gauttam V, Yadav R. Colon targeting: a novel drug delivery system. NeuroQuantology. 2022;20(13):549.
Sharma S, Sinha VR. Current pharmaceutical strategies for efficient site specific delivery in inflamed distal intestinal mucosa. J Controlled Release. 2018;272:97–106.
Sardo HS, Saremnejad F, Bagheri S, Akhgari A, Garekani HA, Sadeghi F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm. 2019;558:367–79.
Nalinbenjapun S, Ovatlarnporn C. Chitosan-5-aminosalicylic acid conjugates for colon-specific drug delivery: methods of preparation and in vitro evaluations. J Drug Deliv Sci Technol. 2020;57: 101397.
Meneguin AB, et al. Nanofiber-boosted retrograded starch/pectin microparticles for targeted 5-aminosalicylic acid delivery in inflammatory bowel disease: in vitro and in vivo non-toxicity evaluation. Carbohydr Polym. 2024;346: 122647. https://doi.org/10.1016/j.carbpol.2024.122647
Bautzová T, Rabišková M, Lamprecht A. Multiparticulate systems containing 5-aminosalicylic acid for the treatment of inflammatory bowel disease. Drug Dev Ind Pharm. 2011;37(9):1100–9.
Stavarache CE, et al. 5-aminosalicylic acid loaded chitosan-carrageenan hydrogel beads with potential application for the treatment of inflammatory bowel disease. Polymers. 2021;13(15): 2463.
Article CAS PubMed PubMed Central Google Scholar
Kaffash E, et al. Statistical optimization of alginate-based oral dosage form of 5-aminosalicylic acid aimed to colonic delivery: in vitro and in vivo evaluation. J Drug Deliv Sci Technol. 2019;52:177–88.
Wang N, et al. 5-aminosalicylic acid pH sensitive core-shell nanoparticles targeting ulcerative colitis. J Drug Deliv Sci Technol. 2022;74: 103578.
Bharti S, Mishra S. Controlled drug release behavior of 5-aminosalicylic acid using polyacrylamide grafted oatmeal (OAT-g-PAM): a pH-sensitive drug carrier. Polym Bull. 2019;76:813–24.
Jannin V, Rosiaux Y, Doucet J. Exploring the possible relationship between the drug release of Compritol®-containing tablets and its polymorph forms using micro X-ray diffraction. J Controlled Release. 2015;197:158–64. https://doi.org/10.1016/j.jconrel.2014.11.013.
Abbaspour M, Sadooghi A, Khodaverdi E, Sardou HS, Nokhodchi A. Preparation and evaluation of lipid-based sustained release pellets of chlorpheniramine maleate by the wet extrusion-spheronization method. BioImpacts. 2024.
Patel J, Patel N, Shah S. In vitro controlled release of colon targeted Mesalamine from compritol ATO 888 based matrix tablets using factorial design. Res Pharm Sci. 2009;4(2):63.
CAS PubMed PubMed Central Google Scholar
Böhm SK, Kruis W. Long-term efficacy and safety of once-daily mesalazine granules for the treatment of active ulcerative colitis. Clin Exp Gastroenterol. 2014 Sep 23:7:369-83.
Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014;11(12):1865–83.
Article CAS PubMed Google Scholar
Sajjadi S, Shayanfar A, Kiafar F, Siahi-Shadbad M. Tacrolimus: physicochemical stability challenges, analytical methods, and new formulations. International Journal of Pharmaceutics: X. 2024;8: 100285. https://doi.org/10.1016/j.ijpx.2024.100285.
Article CAS PubMed Google Scholar
Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19): 5905.
Article CAS PubMed PubMed Central Google Scholar
Handattu MS, Thirumaleshwar S, Prakash GM, Somareddy HK, Veerabhadrappa GH. A comprehensive review on pellets as a dosage form in pharmaceuticals. Curr Drug Targets. 2021;22(10):1183–95.
Comments (0)