Carrillo-Muñoz AJ, Giusiano G, Ezkurra PA, Quindós G. Sertaconazole: updated review of a topical antifungal agent. Expert Rev Anti-Infect Ther. 2005;3(3):333–42. https://doi.org/10.1586/14787210.3.3.333.
Carrillo-Muñoz AJ, Tur-Tur C, Giusiano G, Marcos-Arias C, Eraso E, Jauregizar N, et al. Sertaconazole: an antifungal agent for the topical treatment of superficial candidiasis. Expert Rev Anti-infect Ther. 2013;11:347–58. https://doi.org/10.1586/eri.13.17.
Article PubMed CAS Google Scholar
Georgescu S, Mitran C, Mitran M, Amuzescu A, Matei C, Tampa M. A meta-analysis on the effectiveness of sertaconazole 2% cream compared with other topical therapies for seborrheic dermatitis. J Pers Med. 2022;12:1540. https://doi.org/10.3390/jpm12091540.
Article PubMed PubMed Central Google Scholar
Rehman SU, Khan NR, Ullah M, Shah SU, Rehman AU, Jamal Q, et al. Nanoemulgel mediated enhanced skin Curcumin penetration/retention for local treatment of cutaneous leishmaniasis: in vitro and in vivo assessment. Drug Dev Ind Pharm. 2025. https://doi.org/10.1080/03639045.2025.2473495.
Al Fatease A, Alqahtani A, Khan BA, Mohamed JMM, Farhana SA. Preparation and characterization of a curcumin nanoemulsion gel for the effective treatment of mycoses. Sci Rep. 2023;13:22730. https://doi.org/10.1038/s41598-023-49328-2.
Article PubMed PubMed Central CAS Google Scholar
Essa S, Louhichi F, Raymond M, Hildgen P. Improved antifungal activity of itraconazole-loaded PEG/PLA nanoparticles. J Microencapsul. 2013;30(3):205–17. https://doi.org/10.3109/02652048.2012.714410.
Article PubMed CAS Google Scholar
Azmi NA, Elgharbawy AA, Motlagh SR, Samsudin N, Salleh HM. Nanoemulsions. Factory for food, pharmaceutical and cosmetics. Processes. 2019;7(9):617. https://doi.org/10.3390/pr7090617.
Viegas C, Patrício AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: a comparative review. Pharmaceutics. 2023;15(6):1593. https://doi.org/10.3390/pharmaceutics15061593.
Article PubMed PubMed Central CAS Google Scholar
Escobar-Chávez JJ, Díaz-Torres R, Rodríguez-Cruz IM, Domínguez-Delgado CL, Morales RS, Ángeles-Anguiano E, Melgoza-Contreras LM. Nanocarriers for transdermal drug delivery. Res Rep Transdermal Drug Del. 2012;13:3–17. https://doi.org/10.2147/rrtd.s32621
Tayah DY, Eid AM. Development of miconazole nitrate nanoparticles loaded in nanoemulgel to improve its antifungal activity. Saudi Pharm J. 2023;31(4):526–34. https://doi.org/10.1016/j.jsps.2023.02.005.
Article PubMed PubMed Central CAS Google Scholar
Noor A, Jamil S, Sadeq TW, Mohammed Ameen MS, Kohli K. Development and evaluation of nanoformulations containing Timur oil and Rosemary oil for treatment of topical fungal infections. Gels. 2023;9(7):516. https://doi.org/10.3390/gels9070516.
Article PubMed PubMed Central CAS Google Scholar
Alhasso B, Ghori M, Rout S, Conway B. Development of a nanoemulgel for the topical application of mupirocin. Pharmaceutics. 2023;15:2387. https://doi.org/10.3390/pharmaceutics15102387.
Article PubMed PubMed Central CAS Google Scholar
Donthi MR, Munnangi SR, Krishna KV, Saha RN, Singhvi G, Dubey SK. Nanoemulgel: a novel nano carrier as a tool for topical drug delivery. Pharmaceutics. 2023;15:164. https://doi.org/10.3390/pharmaceutics15010164.
Article PubMed PubMed Central CAS Google Scholar
Sahoo S, Pani NR, Sahoo SK. Effect of microemulsion in topical sertaconazole hydrogel: in vitro and in vivo study. Drug Deliv. 2016;23:338–45. https://doi.org/10.3109/10717544.2014.914601.
Article PubMed CAS Google Scholar
Saitoh H, Takami K, Ohnari H, Chiba Y, Ikeuchi-Takahashi Y, Obata Y. Effects and mode of action of oleic acid and tween 80 on skin permeation of disulfiram. Chem Pharm Bull (Tokyo). 2023;71:c22–00821. https://doi.org/10.1248/cpb.c22-00821.
Patra CN, Mishra A, Jena GK, Panigrahi KC, Sruti J, Ghose D, et al. QbD enabled formulation development of nanoemulsion of nimodipine for improved biopharmaceutical performance. J Pharm Innov. 2023;18:1279–97. https://doi.org/10.1007/s12247-023-09714-9.
Dhawan S, Nanda S. Implementation of quality by design (QbD) concept for the development of emulsion based nanotailored gel for improved antiphotoageing potential of Silymarin. J Drug Deliv Sci Technol. 2023;81:104201. https://doi.org/10.1016/j.jddst.2023.104201.
Ma Q, Zhang J, Lu B, Lin H, Sarkar R, Wu T, et al. Nanoemulgel for improved topical delivery of desonide: formulation design and characterization. AAPS PharmSciTech. 2021;22:163. https://doi.org/10.1208/s12249-021-02035-5.
Article PubMed CAS Google Scholar
Ramireddy AR, Behara DK. QbD based formulation development and optimisation of ozenoxacin topical nano-emulgel and efficacy evaluation using impetigo mice model. AAPS PharmSciTech. 2024;25:90. https://doi.org/10.1208/s12249-024-02805-x.
Article PubMed CAS Google Scholar
Barradas TN, de Holanda e Silva KG. Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environ Chem Lett. 2021;19:1153–71. https://doi.org/10.1007/s10311-020-01142-2.
Rajora A, Kohli K, Nagpal K. Formulation of Itraconazole loaded clove oil based nanoemulsion using pseudoternary phase diagram for improved thermodynamic stability. Indian J Pure Appl Phys. 2024;62:124–32. https://doi.org/10.56042/ijpap.v62i2.7698.
Jhawat V, Gulia M, Sharma AK. Pseudoternary phase diagrams used in emulsion preparation. Chemoinformatics and bioinformatics in the pharmaceutical sciences. Elsevier; 2021; 455–81. https://doi.org/10.1016/B978-0-12-821748-1.00011-7.
Akram S, Anton N, Omran Z, Vandamme T. Water-in-oil nano-emulsions prepared by spontaneous emulsification: new insights on the formulation process. Pharmaceutics. 2021;13:1030. https://doi.org/10.3390/pharmaceutics13071030.
Article PubMed PubMed Central CAS Google Scholar
Algahtani MS, Ahmad MZ, Ahmad J. Investigation of factors influencing formation of nanoemulsion by spontaneous emulsification: impact on droplet size, polydispersity index, and stability. Bioengineering. 2022;9:384. https://doi.org/10.3390/bioengineering9080384.
Article PubMed PubMed Central CAS Google Scholar
Mohit, Kumar P, Solanki P, Mangla B, Aggarwal G. Formulation development, optimization by Box-Behnken design, and in vitro characterization of gefitinib phospholipid complex based nanoemulsion drug delivery system. J Pharm Innov. 2023;18:952–64. https://doi.org/10.1007/s12247-022-09690-6.
Balcaen M, De Neve L, Dewettinck K, Van der Meeren P. Effect of dilution on particle size analysis of w/o emulsions by dynamic light scattering. J Dispers Sci Technol. 2021;42:869–79. https://doi.org/10.1080/01932691.2020.1712216.
Danaei MR, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari YM. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. https://doi.org/10.3390/pharmaceutics10020057.
Article PubMed PubMed Central CAS Google Scholar
Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech. 2007;8(4):104. https://doi.org/10.1208/pt0804104.
Kumar M, Misra A, Mishra AK, Mishra P, Pathak K. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target. 2008;16(10):806–14. https://doi.org/10.1080/10611860802476504.
Article PubMed CAS Google Scholar
Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101. https://doi.org/10.1016/j.addr.2012.09.021.
Comments (0)