Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent advances of ocular drug delivery systems: prominence of ocular implants for chronic eye diseases. Pharmaceutics. 2023;15(6):1746. https://doi.org/10.3390/pharmaceutics15061746.
Article CAS PubMed PubMed Central Google Scholar
Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–24. https://doi.org/10.1124/jpet.119.256933.
Article CAS PubMed Google Scholar
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnol. 2023;21(1):232. https://doi.org/10.1186/s12951-023-01992-2.
Giri BR, Jakka D, Sandoval MA, Kulkarni VR, Bao Q. Advancements in ocular therapy: a review of emerging drug delivery approaches and pharmaceutical technologies. Pharmaceutics. 2024;16(10):1325. https://doi.org/10.3390/pharmaceutics16101325.
Article CAS PubMed PubMed Central Google Scholar
Das B, Nayak AK, Mallick S. Lipid-based nanocarriers for ocular drug delivery: an updated review. J Drug Deliv Sci Technol. 2022;76:103780. https://doi.org/10.1016/j.jddst.2022.103780.
Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, Hadji H, Mitra R, Pal D, Mitra AK. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54. https://doi.org/10.1007/s13346-016-0339-2.
Article CAS PubMed PubMed Central Google Scholar
Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, et al. Drug delivery to the anterior segment of the eye: a review of current and future treatment strategies. Int J Pharm. 2021;607:120924. https://doi.org/10.1016/j.ijpharm.2021.120924.
Article CAS PubMed PubMed Central Google Scholar
Nemr AA, El-Mahrouk GM, Badie HA. Enhancement of ocular anti-glaucomic activity of agomelatine through fabrication of hyaluronic acid modified-elastosomes: formulation, statistical optimisation, in vitro characterisation, histopathological study, and in vivo assessment. J Microencapsul. 2023;40(6):423–41. https://doi.org/10.1080/02652048.2023.2215326.
Article CAS PubMed Google Scholar
Gugleva V, Andonova V. Recent progress of solid lipid nanoparticles and nanostructured lipid carriers as ocular drug delivery platforms. Pharmaceuticals (Basel). 2023;16(3):474. https://doi.org/10.3390/ph16030474.
Article CAS PubMed Google Scholar
Pelusi L, Mandatori D, Mastropasqua L, Agnifili L, Allegretti M, Nubile M, et al. Innovation in the development of synthetic and natural ocular drug delivery systems for eye diseases treatment: focusing on drug-loaded ocular inserts, contacts, and intraocular lenses. Pharmaceutics. 2023;15(2):625. https://doi.org/10.3390/pharmaceutics15020625.
Article CAS PubMed PubMed Central Google Scholar
Prata AI, Coimbra P, Pina ME. Preparation of dexamethasone ophthalmic implants: a comparative study of in vitro release profiles. Pharm Dev Technol. 2018;23(3):218–24. https://doi.org/10.1080/10837450.2017.1306560.
Article CAS PubMed Google Scholar
Nemr AA, El-Mahrouk GM, Badie HA. Development and evaluation of surfactant-based elastic vesicular system for transdermal delivery of cilostazole: ex-vivo permeation and histopathological evaluation studies. J Liposome Res. 2022;32(2):159–71. https://doi.org/10.1080/08982104.2021.1918151.
Article CAS PubMed Google Scholar
Das B, Nayak AK, Mallick S. Transferosomes: A novel nanovesicular approach for drug delivery, In: Nayak AK, Hasnain MS, Aminabhavi TM, Torchilin VP, editors, Systems of Nanovesicular Drug Delivery, Academic Press, Elsevier Inc.: United States, 2022; pp. 103–114.https://doi.org/10.1016/B978-0-323-91864-0.00022-X
Sapkota R, Dash AK. Liposomes and transferosomes: a breakthrough in topical and transdermal delivery. Ther Deliv. 2021;12(2):145–58. https://doi.org/10.4155/tde-2020-0122.
Article CAS PubMed Google Scholar
Gupta R, Kumar A. Transfersomes. The ultra-deformable carrier system for non-invasive delivery of drug. Curr Drug Deliv. 2021;18(4):408–20. https://doi.org/10.2174/1567201817666200804105416.
Article CAS PubMed Google Scholar
Simrah HA, Usmani SA, Izhar MP. Transfersome, an ultra-deformable lipid-based drug nanocarrier: an updated review with therapeutic applications. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(2):639–73. https://doi.org/10.1007/s00210-023-02670-8.
Article CAS PubMed Google Scholar
Das B, Nayak AK, Mallick S. Thyme oil-containing fluconazole-loaded transferosomal bigel for transdermal delivery. AAPS PharmSciTech. 2023;24(8):240. https://doi.org/10.1208/s12249-023-02698-2.
Article CAS PubMed Google Scholar
Bhujbal S, Rupenthal ID, Patravale VB, Agarwal P. Transfersomes: a next-generation drug delivery system for topical ocular drug delivery. Expert Opin Drug Deliv. 2025. https://doi.org/10.1080/17425247.2025.2497829.
Rowat AC, Kitson N, Thewalt JL. Interactions of oleic acid and model stratum corneum membranes as seen by 2H NMR. Int J Pharm. 2006;307(2):225–31. https://doi.org/10.1016/j.ijpharm.2005.10.008.
Article CAS PubMed Google Scholar
Sales-Campos H, Souza PR, Peghini BC, da Silva JS, Cardoso CR. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem. 2013;13(2):201–10. https://doi.org/10.1016/j.ijpharm.2005.10.008.
Article CAS PubMed Google Scholar
Touitou E, Godin B, Karl Y, Bujanover S, Becker Y. Oleic acid, a skin penetration enhancer, affects Langerhans cells and corneocytes. J Control Release. 2002;80(1–3):1–7. https://doi.org/10.1016/s0168-3659(02)00004-4.
Article CAS PubMed Google Scholar
Ngo HV, Nguyen HD, Lee BJ. Hyaluronic acid conjugates with controlled oleic acid substitution as new nanomaterials for improving ocular co-delivery of cyclosporine A and oleic acid. Asian J Pharm Sci. 2025;20(1):101009. https://doi.org/10.1016/j.ajps.2024.101009.
Nair R, Chakrapani M, Kaza R. Preparation and evaluation of Vancomycin microemulsion for ocular drug delivery. Drug Deliv Lett. 2012;2(1):26–34. https://doi.org/10.1016/j.ajps.2024.101009.
Moghimipour E, Farsimadan N, Salimi A. Ocular delivery of Quercetin using microemulsion system: design, characterization, and ex-vivo transcorneal permeation. Iran J Pharm Res. 2022;21(1):e127486. https://doi.org/10.5812/ijpr-127486.
Article CAS PubMed PubMed Central Google Scholar
Gao XC, Qi HP, Bai JH, Huang L, Cui H. Effects of oleic acid on the corneal permeability of compounds and evaluation of its ocular irritation of rabbit eyes. Curr Eye Res. 2014;39(12):1161–8. https://doi.org/10.3109/02713683.2014.904361.
Article CAS PubMed Google Scholar
Mudgil P. Evaluation of use of essential fatty acids in topical ophthalmic preparations for dry eye. Ocul Surf. 2020;18(1):74–9. https://doi.org/10.1016/j.jtos.2019.10.001.
Cintra AB, Delboni LA, Lara MG. Influence of additives on swelling and mucoadhesion properties of glycerylmonooleate liquid crystals. Braz J Pharm Sci. 2022;58:e20803. https://doi.org/10.1590/s2175-97902022e20803.
Kajthunyakarn W, Jarungsirawat R, Sakloetsakun D, Pongjanyakul T. Preparation and characterization of fluconazole-loaded sodium caseinate matrix films for oral candidiasis. J Drug Deliv Sci Technol. 2024;98:105900. https://doi.org/10.1016/j.jddst.2024.105900.
Yassin GE, Amer MA, Mannaa IM. Fluconazole-niosome-laden contact lens: a promising therapeutic approach for prolonged ocular delivery and enhanced antifungal activity. J Pharm Innov. 2024;19:45. https://doi.org/10.1007/s12247-024-09850-w.
Comments (0)