Application of natural photosensitizers in dye-sensitized solar cells: opportunities, challenges, and future outlook

O’Neill, M., & Fraas, L. (2023). Low-cost solar electric power. Springer Cham, 9(2), 179.

Google Scholar 

Ling, C., Aung, M., Abdullah, L., Lim, L., & Uyama, H. (2020). A short review of iodide salt usage and properties in dye sensitized solar cell application: Single vs binary salt system. Solar Energy, 206, 1033–1038.

Article  CAS  Google Scholar 

McEvoy, A., & Grätzel, M. (1994). Sensitisation in photochemistry and photovoltaics. Solar Energy Materials and Solar Cells., 32(3), 221–227.

Article  CAS  Google Scholar 

Gerischer, H., Michel-Beyerle, M. E., Rebentrost, F., & Tributsch, H. (1968). Sensitization of charge injection into semiconductors with large band gap. Electrochimica Acta, 13(6), 1509–1515.

Article  CAS  Google Scholar 

Tributsch, H., & Calvin, M. (1971). Electrochemistry of excited molecules: photo-electrochemical reactions of chlorophylls. Photochemistry and Photobiology, 14, 95–112.

Article  CAS  Google Scholar 

Tsubomura, H., Matsumura, M., Nomura, Y., & Amamiya, T. (1976). Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell. Nature, 261, 402–403.

Article  CAS  Google Scholar 

Beley, M., Chartier, P., & Ern, V. (1981). Dye sensitization of ceramic semiconducting electrodes for photoelectrochemical conversion. Revue de Physique Appliquée, 16(1), 5–10.

Article  Google Scholar 

Reagen, B., & Gratzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737.

Article  Google Scholar 

Yella, A., Lee, H., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., & Gratzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 334(6056), 629–634.

Article  PubMed  CAS  Google Scholar 

Ji, J. M., Zhou, L. H., Yu, K. E., Chul, H. K., & Kim, H. K. (2020). 14.2% efficiency dye-sensitized solar cells by co-sensitizing novel thieno [3, 2-b] indole-based organic dyes with a promising porphyrin sensitizer. Advanced Energy Materials, 10(15), 2000124.

Article  CAS  Google Scholar 

Dimroth, D. F. (2022) Fraunhofer ISE develops the world's most efficient solar cell with 47.6 percent efficiency. Fraunhofer Institute for Solar Energy Systems ISE (pp. 1–3).

Bellini, E. (2023). KAUST claims 33.7% efficiency for perovskite/silicon tandem solar cell. PV Magazine.

Sharma, K., Sharma, V., & Sharma, S. S. (2018). Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Research Letters, 13, 1–46.

Article  Google Scholar 

Sim, Y. H., Yun, M. J., Cha, S. I., & Lee, D. Y. (2020). Preparation 8.5%-efficient submodule using 5%-efficient DSSCs via three-dimensional angle array and light-trapping layer. NPG Asia Materials, 12(1), 14.

Article  CAS  Google Scholar 

Scopus. Elsevier [Online]. https://www.scopus.com/. Accessed 20 Feb 2025.

Lu, S., Koeppe, R., Günes, S., & Sariciftci, N. (2007). Quasi-solid-state dye-sensitized solar cells with cyanoacrylate as electrolyte matrix. Solar Energy Materials and Solar Cells, 91(12), 1081–1086.

Article  CAS  Google Scholar 

Najm, A. S., Alwash, S. A., Sulaiman, N. H., Chowdhury, M. S., & Techato, K. (2022). N719 dye as a sensitizer for dye-sensitized solar cells (DSSCs): A review of its functions and certain rudimentary principles. Environmental Progress & Sustainable Energy, 42(1), 13955.

Article  Google Scholar 

Millington, K. R., Fincher, K. W., & King, A. L. (2007). Mordant dyes as sensitisers in dye-sensitised solar cells. Solar Energy Materials and Solar Cells, 91(17), 1618–1630.

Article  CAS  Google Scholar 

Grätzel, M. (2000). Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics: Research and Applications, 8(1), 171–185.

Article  Google Scholar 

Yoo, S., Lee, S., Velilla Hernandez, E., Kim, M., Kim, G., Shin, T., Nazeeruddin, M., Mora-Seró, I., & Lee, H. (2020). Nanoscale perovskite-sensitized solar cell revisited: dye-cell or perovskite-cell? Chemsuschem, 13(10), 2571–2576.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee, H. J., Yum, J.-H., Leventis, H. C., Zakeeruddin, S. M., Haque, S. A., Chen, P., Seok, S. I., Grätzel, M., & Nazeeruddin, M. K. (2008). CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. The Journal of Physical Chemistry C, 112(30), 11600–11608.

Article  CAS  Google Scholar 

González-Pedro, V., Xu, X., Mora-Seró, I., & Bisquert, J. (2010). Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano, 4(10), 5783–5790.

Article  PubMed  Google Scholar 

Aghazada, S., & Nazeeruddin, M. K. (2018). Ruthenium complexes as sensitizers in dye-sensitized solar cells. Inorganics, 6(2), 52.

Article  Google Scholar 

Tomar, N., Agrawal, A., Dhaka, V. S., & Surolia, P. K. (2020). Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends. Solar Energy, 207, 59–76.

Article  CAS  Google Scholar 

Qin, Y., & Peng, Q. (2012). Ruthenium sensitizers and their applications in dye-sensitized solar cells. International Journal of Photoenergy, 2012(1), 1–21.

Article  Google Scholar 

Elmorsy, M. R., Su, R., Abdel-Latif, E., Badawy, S. A., El-Shafei, A., & Fadda, A. A. (2020). New cyanoacetanilides based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium (II) complex (HD-2). Journal of Materials Science: Materials in Electronics, 31(10), 7981–7990.

CAS  Google Scholar 

Richhariya, G., & Kumar, A. (2021). Performance evaluation of mixed synthetic organic dye as sensitizer based dye sensitized solar cell. Optical Materials, 111, Article 110658.

Article  CAS  Google Scholar 

Mahmoud, S. E., Fadda, A. A., Abdel-Latif, E., & Elmorsy, M. R. (2022). Synthesis of novel triphenylamine-based organic dyes with dual anchors for efficient dye-sensitized solar cells. Nanoscale Research Letters, 17(1), 71.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Akula, S. B., Tingare, Y. S., Su, C., Chen, H. S., Li, W. Q., Lekphet, W., & Li, W. R. (2021). Bridgehead nitrogen tripodal organic dyes having multiple donor-π-acceptor branches for solar cell applications. Dyes and Pigments, 186, Article 108985.

Article  CAS  Google Scholar 

Yao, Z., Wu, H., Li, Y., Wang, J., Zhang, J., Zhang, M., Guo, Y., & Wang, P. (2015). Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy & Environmental Science, 8(11), 3192–3197.

Article  CAS  Google Scholar 

Gürses, A., Açıkyıldız, M., Güneş, K., Gürses, M., Gürses, A., Açıkyıldız, M., Güneş, K., & Gürses, M. (2016). Dyes and pigments: their structure and properties. Dyes and Pigments 13–29.

Błaszczyk, A., Joachimiak-Lechman, K., Sady, S., Tański, T., Szindler, M., & Drygała, A. (2021). Environmental performance of dye-sensitized solar cells based on natural dyes. Solar Energy, 215, 346–355.

Article  Google Scholar 

Kushwaha, R., Srivastava, P., & Bahadur, L. (2013). Natural pigments from plants used as sensitizers for TiO2 based dye-sensitized solar cells. Journal of Energy, 2013(1), Article 654953.

Google Scholar 

Ghann, W., Kang, H., Sheikh, T., Yadav, S., Chavez-Gil, T., Nesbitt, F., & Uddin, J. (2017). Fabrication, optimization and characterization of natural dye sensitized solar cell. Scientific Reports, 7(1), 41470.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hug, H., Bader, M., Mair, P., & Glatzel, T. (2014). Biophotovoltaics: Natural pigments in dye-sensitized solar cells. Applied Energy, 115, 216–225.

Article  CAS  Google Scholar 

Arof, A. K., & Ping, T. L. (2017). Chlorophyll as photosensitizer in dye-sensitized solar cells. Chlorophyll, 7, 105–121.

Google Scholar 

Bagotsky, V. S. (2011). Fuel cells, batteries, and the development of electrochemistry. Journal of Solid State Electrochemistry, 15, 1559–1562.

Article  CAS  Google Scholar 

Petrovic, S. (2021). Electrochemistry crash course for engineers (pp. 93–104). Springer.

Google Scholar 

Barak, M. (1980). Electrochemical power sources: primary and secondary batteries. IET.

Book  Google Scholar 

Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolytic cells. Journal of Research in Science Teaching, 20(10), 1079–1099.

Article  Google Scholar 

Norton, M. (2023). Here comes the sun. In Modern history of materials: From stability to sustainability (pp. 127–146). Springer.

Pastuszak, J., & Węgierek, P. (2022). Photovoltaic cell generations and current research directions for their development. Materials, 15(16), 5542.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Oni, A., Mohsin, A., Rahman, M., & Bhuian, M. (2024). A comprehensive evaluation of solar cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells. Energy Re

Comments (0)

No login
gif