O’Neill, M., & Fraas, L. (2023). Low-cost solar electric power. Springer Cham, 9(2), 179.
Ling, C., Aung, M., Abdullah, L., Lim, L., & Uyama, H. (2020). A short review of iodide salt usage and properties in dye sensitized solar cell application: Single vs binary salt system. Solar Energy, 206, 1033–1038.
McEvoy, A., & Grätzel, M. (1994). Sensitisation in photochemistry and photovoltaics. Solar Energy Materials and Solar Cells., 32(3), 221–227.
Gerischer, H., Michel-Beyerle, M. E., Rebentrost, F., & Tributsch, H. (1968). Sensitization of charge injection into semiconductors with large band gap. Electrochimica Acta, 13(6), 1509–1515.
Tributsch, H., & Calvin, M. (1971). Electrochemistry of excited molecules: photo-electrochemical reactions of chlorophylls. Photochemistry and Photobiology, 14, 95–112.
Tsubomura, H., Matsumura, M., Nomura, Y., & Amamiya, T. (1976). Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell. Nature, 261, 402–403.
Beley, M., Chartier, P., & Ern, V. (1981). Dye sensitization of ceramic semiconducting electrodes for photoelectrochemical conversion. Revue de Physique Appliquée, 16(1), 5–10.
Reagen, B., & Gratzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737.
Yella, A., Lee, H., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., & Gratzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 334(6056), 629–634.
Article PubMed CAS Google Scholar
Ji, J. M., Zhou, L. H., Yu, K. E., Chul, H. K., & Kim, H. K. (2020). 14.2% efficiency dye-sensitized solar cells by co-sensitizing novel thieno [3, 2-b] indole-based organic dyes with a promising porphyrin sensitizer. Advanced Energy Materials, 10(15), 2000124.
Dimroth, D. F. (2022) Fraunhofer ISE develops the world's most efficient solar cell with 47.6 percent efficiency. Fraunhofer Institute for Solar Energy Systems ISE (pp. 1–3).
Bellini, E. (2023). KAUST claims 33.7% efficiency for perovskite/silicon tandem solar cell. PV Magazine.
Sharma, K., Sharma, V., & Sharma, S. S. (2018). Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Research Letters, 13, 1–46.
Sim, Y. H., Yun, M. J., Cha, S. I., & Lee, D. Y. (2020). Preparation 8.5%-efficient submodule using 5%-efficient DSSCs via three-dimensional angle array and light-trapping layer. NPG Asia Materials, 12(1), 14.
Scopus. Elsevier [Online]. https://www.scopus.com/. Accessed 20 Feb 2025.
Lu, S., Koeppe, R., Günes, S., & Sariciftci, N. (2007). Quasi-solid-state dye-sensitized solar cells with cyanoacrylate as electrolyte matrix. Solar Energy Materials and Solar Cells, 91(12), 1081–1086.
Najm, A. S., Alwash, S. A., Sulaiman, N. H., Chowdhury, M. S., & Techato, K. (2022). N719 dye as a sensitizer for dye-sensitized solar cells (DSSCs): A review of its functions and certain rudimentary principles. Environmental Progress & Sustainable Energy, 42(1), 13955.
Millington, K. R., Fincher, K. W., & King, A. L. (2007). Mordant dyes as sensitisers in dye-sensitised solar cells. Solar Energy Materials and Solar Cells, 91(17), 1618–1630.
Grätzel, M. (2000). Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics: Research and Applications, 8(1), 171–185.
Yoo, S., Lee, S., Velilla Hernandez, E., Kim, M., Kim, G., Shin, T., Nazeeruddin, M., Mora-Seró, I., & Lee, H. (2020). Nanoscale perovskite-sensitized solar cell revisited: dye-cell or perovskite-cell? Chemsuschem, 13(10), 2571–2576.
Article PubMed PubMed Central CAS Google Scholar
Lee, H. J., Yum, J.-H., Leventis, H. C., Zakeeruddin, S. M., Haque, S. A., Chen, P., Seok, S. I., Grätzel, M., & Nazeeruddin, M. K. (2008). CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. The Journal of Physical Chemistry C, 112(30), 11600–11608.
González-Pedro, V., Xu, X., Mora-Seró, I., & Bisquert, J. (2010). Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano, 4(10), 5783–5790.
Aghazada, S., & Nazeeruddin, M. K. (2018). Ruthenium complexes as sensitizers in dye-sensitized solar cells. Inorganics, 6(2), 52.
Tomar, N., Agrawal, A., Dhaka, V. S., & Surolia, P. K. (2020). Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends. Solar Energy, 207, 59–76.
Qin, Y., & Peng, Q. (2012). Ruthenium sensitizers and their applications in dye-sensitized solar cells. International Journal of Photoenergy, 2012(1), 1–21.
Elmorsy, M. R., Su, R., Abdel-Latif, E., Badawy, S. A., El-Shafei, A., & Fadda, A. A. (2020). New cyanoacetanilides based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium (II) complex (HD-2). Journal of Materials Science: Materials in Electronics, 31(10), 7981–7990.
Richhariya, G., & Kumar, A. (2021). Performance evaluation of mixed synthetic organic dye as sensitizer based dye sensitized solar cell. Optical Materials, 111, Article 110658.
Mahmoud, S. E., Fadda, A. A., Abdel-Latif, E., & Elmorsy, M. R. (2022). Synthesis of novel triphenylamine-based organic dyes with dual anchors for efficient dye-sensitized solar cells. Nanoscale Research Letters, 17(1), 71.
Article PubMed PubMed Central CAS Google Scholar
Akula, S. B., Tingare, Y. S., Su, C., Chen, H. S., Li, W. Q., Lekphet, W., & Li, W. R. (2021). Bridgehead nitrogen tripodal organic dyes having multiple donor-π-acceptor branches for solar cell applications. Dyes and Pigments, 186, Article 108985.
Yao, Z., Wu, H., Li, Y., Wang, J., Zhang, J., Zhang, M., Guo, Y., & Wang, P. (2015). Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy & Environmental Science, 8(11), 3192–3197.
Gürses, A., Açıkyıldız, M., Güneş, K., Gürses, M., Gürses, A., Açıkyıldız, M., Güneş, K., & Gürses, M. (2016). Dyes and pigments: their structure and properties. Dyes and Pigments 13–29.
Błaszczyk, A., Joachimiak-Lechman, K., Sady, S., Tański, T., Szindler, M., & Drygała, A. (2021). Environmental performance of dye-sensitized solar cells based on natural dyes. Solar Energy, 215, 346–355.
Kushwaha, R., Srivastava, P., & Bahadur, L. (2013). Natural pigments from plants used as sensitizers for TiO2 based dye-sensitized solar cells. Journal of Energy, 2013(1), Article 654953.
Ghann, W., Kang, H., Sheikh, T., Yadav, S., Chavez-Gil, T., Nesbitt, F., & Uddin, J. (2017). Fabrication, optimization and characterization of natural dye sensitized solar cell. Scientific Reports, 7(1), 41470.
Article PubMed PubMed Central CAS Google Scholar
Hug, H., Bader, M., Mair, P., & Glatzel, T. (2014). Biophotovoltaics: Natural pigments in dye-sensitized solar cells. Applied Energy, 115, 216–225.
Arof, A. K., & Ping, T. L. (2017). Chlorophyll as photosensitizer in dye-sensitized solar cells. Chlorophyll, 7, 105–121.
Bagotsky, V. S. (2011). Fuel cells, batteries, and the development of electrochemistry. Journal of Solid State Electrochemistry, 15, 1559–1562.
Petrovic, S. (2021). Electrochemistry crash course for engineers (pp. 93–104). Springer.
Barak, M. (1980). Electrochemical power sources: primary and secondary batteries. IET.
Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolytic cells. Journal of Research in Science Teaching, 20(10), 1079–1099.
Norton, M. (2023). Here comes the sun. In Modern history of materials: From stability to sustainability (pp. 127–146). Springer.
Pastuszak, J., & Węgierek, P. (2022). Photovoltaic cell generations and current research directions for their development. Materials, 15(16), 5542.
Article PubMed PubMed Central CAS Google Scholar
Oni, A., Mohsin, A., Rahman, M., & Bhuian, M. (2024). A comprehensive evaluation of solar cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells. Energy Re
Comments (0)