Siegel, R., et al., Cancer statistics, 2014. CA: a cancer journal for clinicians, 2014. 64(1).
Dickerson, E. B., et al. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters, 269(1), 57–66.
Article CAS PubMed PubMed Central Google Scholar
Pissuwan, D., Valenzuela, S. M., & Cortie, M. B. (2006). Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends in Biotechnology, 24(2), 62–67.
Article CAS PubMed Google Scholar
Jabeen, F., et al. (2014). Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules, 19(12), 20580–20593.
Article PubMed PubMed Central Google Scholar
Shao, J., et al. (2013). Photothermal nanodrugs: Potential of TNF-gold nanospheres for cancer theranostics. Scientific Reports, 3(1), 1293.
Article PubMed PubMed Central Google Scholar
Jacques, S. L. (2013). Optical properties of biological tissues: A review. Physics in Medicine & Biology, 58(11), R37.
Kennedy, L. C., et al. (2011). A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small (Weinheim an der Bergstrasse, Germany), 7(2), 169–183.
Article CAS PubMed Google Scholar
Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 35(3), 209–217.
Article CAS PubMed Google Scholar
Hodak, J. H., Henglein, A., & Hartland, G. V. (2000). Photophysics of nanometer sized metal particles: Electron−phonon coupling and coherent excitation of breathing vibrational modes (pp. 9954–9965). London: ACS Publications.
Hwang, S., et al. (2014). Gold nanoparticle-mediated photothermal therapy: Current status and future perspective. Nanomedicine, 9(13), 2003–2022.
Article CAS PubMed Google Scholar
Wang, X., et al. (2016). A facile strategy to prepare dendrimer-stabilized gold nanorods with sub-10-nm size for efficient photothermal cancer therapy. Scientific Reports, 6(1), 22764.
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y., et al. (2012). Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. Journal of Nanomaterials, 2012, 7–7.
Wang, A., et al. (2014). Gold nanoparticles: Synthesis, stability test, and application for the rice growth. Journal of Nanomaterials, 2014, 3–3.
Alkilany, A. M., et al. (2009). Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small (Weinheim an der Bergstrasse, Germany), 5(6), 701–708.
Article CAS PubMed Google Scholar
Jameel, M. S., et al. (2021). Green sonochemical synthesis platinum nanoparticles as a novel contrast agent for computed tomography. Materials Today Communications, 27, 102480.
Jameel, M. S., Aziz, A. A., & Dheyab, M. A. (2020). Comparative analysis of platinum nanoparticles synthesized using sonochemical-assisted and conventional green methods. Nano-Structures & Nano-Objects, 23, 100484.
Doktycz, S. J., & Suslick, K. S. (1990). Interparticle collisions driven by ultrasound. Science, 247(4946), 1067–1069.
Article CAS PubMed Google Scholar
Chen, D., Sharma, S. K., & Mudhoo, A. (2011). Handbook on applications of ultrasound: Sonochemistry for sustainability. CRC Press.
Theerdhala, S., et al. (2010). Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications. Ultrasonics Sonochemistry, 17(4), 730–737.
Article CAS PubMed Google Scholar
Ali Dheyab, M., et al. (2020). Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents. Applied Sciences, 10(20), 7020.
Jameel, M. S., et al. (2020). Rapid methanol-assisted amalgamation of high purity platinum nanoparticles utilizing sonochemical strategy and investigation on its catalytic activity. Surfaces and Interfaces, 21, 100785.
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47.
Article CAS PubMed PubMed Central Google Scholar
David, A. V. A., Arulmoli, R., & Parasuraman, S. (2016). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84.
Yang, D., et al. (2020). Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxidative Medicine and Cellular Longevity, 2020(1), 8825387.
PubMed PubMed Central Google Scholar
Kumar, V. D., Verma, P. R. P., & Singh, S. K. (2015). Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT-Food Science and Technology, 61(2), 330–338.
Lee, Y. J., & Park, Y. (2020). Green synthetic nanoarchitectonics of gold and silver nanoparticles prepared using quercetin and their cytotoxicity and catalytic applications. Journal of Nanoscience and Nanotechnology, 20(5), 2781–2790.
Article CAS PubMed Google Scholar
González-Ballesteros, N., et al., Quercetin-mediated green synthesis of Au/TiO2 nanocomposites for the photocatalytic degradation of antibiotic ciprofloxacin. Journal of Industrial and Engineering Chemistry, 2024.
Das, D. K., et al. (2013). Biosynthesis of stabilised gold nanoparticle using an aglycone flavonoid, quercetin. Journal of Experimental Nanoscience, 8(4), 649–655.
Osonga, F. J., et al. (2019). Photochemical synthesis and catalytic applications of gold nanoplates fabricated using quercetin diphosphate macromolecules. ACS Omega, 4(4), 6511–6520.
Article CAS PubMed PubMed Central Google Scholar
Couderc, J., et al. (1959). Standard X-ray diffraction powder patterns. Zeitschrift für Metallkunde, 50, 708–716.
Dheyab, M. A., et al. (2023). Exploring the anticancer potential of biogenic inorganic gold nanoparticles synthesized via mushroom-assisted green route. Inorganic Chemistry Communications, 157, 111363.
Rabeea, M. A., et al. (2021). Phytosynthesis of Prosopis farcta fruit-gold nanoparticles using infrared and thermal devices and their catalytic efficacy. Inorganic Chemistry Communications, 133, 108931.
Haiss, W., et al. (2007). Determination of size and concentration of gold nanoparticles from UV−Vis spectra. Analytical Chemistry, 79(11), 4215–4221.
Article CAS PubMed Google Scholar
Link, S., & El-Sayed, M. A. (1999). Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212–4217.
Jain, P. K., et al. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 110(14), 7238–7248.
Article CAS PubMed Google Scholar
Eskandarloo, H., et al. (2016). Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrasonics Sonochemistry, 28, 169–177.
Article CAS PubMed Google Scholar
Hao, H., et al. (2004). Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation. Colloids and Surfaces B: Biointerfaces, 33(3–4), 151–156.
Comments (0)