Quercetin-mediated synthesis of stable and biocompatible gold nanoparticles for enhanced photothermal therapy

Siegel, R., et al., Cancer statistics, 2014. CA: a cancer journal for clinicians, 2014. 64(1).

Dickerson, E. B., et al. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters, 269(1), 57–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pissuwan, D., Valenzuela, S. M., & Cortie, M. B. (2006). Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends in Biotechnology, 24(2), 62–67.

Article  CAS  PubMed  Google Scholar 

Jabeen, F., et al. (2014). Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules, 19(12), 20580–20593.

Article  PubMed  PubMed Central  Google Scholar 

Shao, J., et al. (2013). Photothermal nanodrugs: Potential of TNF-gold nanospheres for cancer theranostics. Scientific Reports, 3(1), 1293.

Article  PubMed  PubMed Central  Google Scholar 

Jacques, S. L. (2013). Optical properties of biological tissues: A review. Physics in Medicine & Biology, 58(11), R37.

Article  Google Scholar 

Kennedy, L. C., et al. (2011). A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small (Weinheim an der Bergstrasse, Germany), 7(2), 169–183.

Article  CAS  PubMed  Google Scholar 

Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 35(3), 209–217.

Article  CAS  PubMed  Google Scholar 

Hodak, J. H., Henglein, A., & Hartland, G. V. (2000). Photophysics of nanometer sized metal particles: Electron−phonon coupling and coherent excitation of breathing vibrational modes (pp. 9954–9965). London: ACS Publications.

Google Scholar 

Hwang, S., et al. (2014). Gold nanoparticle-mediated photothermal therapy: Current status and future perspective. Nanomedicine, 9(13), 2003–2022.

Article  CAS  PubMed  Google Scholar 

Wang, X., et al. (2016). A facile strategy to prepare dendrimer-stabilized gold nanorods with sub-10-nm size for efficient photothermal cancer therapy. Scientific Reports, 6(1), 22764.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y., et al. (2012). Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. Journal of Nanomaterials, 2012, 7–7.

Article  Google Scholar 

Wang, A., et al. (2014). Gold nanoparticles: Synthesis, stability test, and application for the rice growth. Journal of Nanomaterials, 2014, 3–3.

Article  Google Scholar 

Alkilany, A. M., et al. (2009). Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small (Weinheim an der Bergstrasse, Germany), 5(6), 701–708.

Article  CAS  PubMed  Google Scholar 

Jameel, M. S., et al. (2021). Green sonochemical synthesis platinum nanoparticles as a novel contrast agent for computed tomography. Materials Today Communications, 27, 102480.

Article  CAS  Google Scholar 

Jameel, M. S., Aziz, A. A., & Dheyab, M. A. (2020). Comparative analysis of platinum nanoparticles synthesized using sonochemical-assisted and conventional green methods. Nano-Structures & Nano-Objects, 23, 100484.

Article  CAS  Google Scholar 

Doktycz, S. J., & Suslick, K. S. (1990). Interparticle collisions driven by ultrasound. Science, 247(4946), 1067–1069.

Article  CAS  PubMed  Google Scholar 

Chen, D., Sharma, S. K., & Mudhoo, A. (2011). Handbook on applications of ultrasound: Sonochemistry for sustainability. CRC Press.

Book  Google Scholar 

Theerdhala, S., et al. (2010). Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications. Ultrasonics Sonochemistry, 17(4), 730–737.

Article  CAS  PubMed  Google Scholar 

Ali Dheyab, M., et al. (2020). Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents. Applied Sciences, 10(20), 7020.

Article  Google Scholar 

Jameel, M. S., et al. (2020). Rapid methanol-assisted amalgamation of high purity platinum nanoparticles utilizing sonochemical strategy and investigation on its catalytic activity. Surfaces and Interfaces, 21, 100785.

Article  CAS  Google Scholar 

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

David, A. V. A., Arulmoli, R., & Parasuraman, S. (2016). Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84.

Article  CAS  Google Scholar 

Yang, D., et al. (2020). Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxidative Medicine and Cellular Longevity, 2020(1), 8825387.

PubMed  PubMed Central  Google Scholar 

Kumar, V. D., Verma, P. R. P., & Singh, S. K. (2015). Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT-Food Science and Technology, 61(2), 330–338.

Article  Google Scholar 

Lee, Y. J., & Park, Y. (2020). Green synthetic nanoarchitectonics of gold and silver nanoparticles prepared using quercetin and their cytotoxicity and catalytic applications. Journal of Nanoscience and Nanotechnology, 20(5), 2781–2790.

Article  CAS  PubMed  Google Scholar 

González-Ballesteros, N., et al., Quercetin-mediated green synthesis of Au/TiO2 nanocomposites for the photocatalytic degradation of antibiotic ciprofloxacin. Journal of Industrial and Engineering Chemistry, 2024.

Das, D. K., et al. (2013). Biosynthesis of stabilised gold nanoparticle using an aglycone flavonoid, quercetin. Journal of Experimental Nanoscience, 8(4), 649–655.

Article  CAS  Google Scholar 

Osonga, F. J., et al. (2019). Photochemical synthesis and catalytic applications of gold nanoplates fabricated using quercetin diphosphate macromolecules. ACS Omega, 4(4), 6511–6520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Couderc, J., et al. (1959). Standard X-ray diffraction powder patterns. Zeitschrift für Metallkunde, 50, 708–716.

Google Scholar 

Dheyab, M. A., et al. (2023). Exploring the anticancer potential of biogenic inorganic gold nanoparticles synthesized via mushroom-assisted green route. Inorganic Chemistry Communications, 157, 111363.

Article  CAS  Google Scholar 

Rabeea, M. A., et al. (2021). Phytosynthesis of Prosopis farcta fruit-gold nanoparticles using infrared and thermal devices and their catalytic efficacy. Inorganic Chemistry Communications, 133, 108931.

Article  CAS  Google Scholar 

Haiss, W., et al. (2007). Determination of size and concentration of gold nanoparticles from UV−Vis spectra. Analytical Chemistry, 79(11), 4215–4221.

Article  CAS  PubMed  Google Scholar 

Link, S., & El-Sayed, M. A. (1999). Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212–4217.

Article  CAS  Google Scholar 

Jain, P. K., et al. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 110(14), 7238–7248.

Article  CAS  PubMed  Google Scholar 

Eskandarloo, H., et al. (2016). Ultrasonic-assisted degradation of phenazopyridine with a combination of Sm-doped ZnO nanoparticles and inorganic oxidants. Ultrasonics Sonochemistry, 28, 169–177.

Article  CAS  PubMed  Google Scholar 

Hao, H., et al. (2004). Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation. Colloids and Surfaces B: Biointerfaces, 33(3–4), 151–156.

Article  CAS 

Comments (0)

No login
gif