Spectroscopic characteristics of vermilion red light emitting Eu(III) organic complexes for laser, optoelectronic and latent fingerprint application

Kuriki, K., Koike, Y., & Okamoto, Y. (2002). Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chemical Reviews, 102, 2347–2356.

Article  PubMed  CAS  Google Scholar 

Akerboom, S., van den Elshout, J. J. M. H., Mutikainen, I., Siegler, M. A., Fu, W. T., & Bouwman, E. (2013). Substituted phenanthrolines as antennae in luminescent EuIII complexes. European Journal of Inorganic Chemistry, 2013, 6137–6146.

Article  CAS  Google Scholar 

Taxak, V. B., Kumar, R., Makrandi, J. K., & Khatkar, S. P. (2010). Luminescent properties of europium and terbium complexes with 2′-hydroxy-4′, 6′-dimethoxyacetophenone. Displays, 31, 116–121.

Article  CAS  Google Scholar 

Luo, Y.-M., Chen, Z., Tang, R.-R., Xiao, L.-X., & Peng, H.-J. (2008). Investigations into the synthesis and fluorescence properties of Eu (III), Tb (III), Sm (III) and Gd (III) complexes of a novel bis-β-diketone-type ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 513–516.

Article  PubMed  Google Scholar 

Yuan, J., & Wang, G. (2006). Lanthanide-based luminescence probes and time-resolved luminescence bioassays. TrAC - Trends in Analytical Chemistry, 25, 490–500.

Article  CAS  Google Scholar 

Zhang, X., Jin, X., & Li, Y. (2022). Water-induced luminescence improvement in a lanthanide β-diketone complex for monitoring water purity. Chinese Chemical Letters, 33, 2117–2120.

Article  CAS  Google Scholar 

Escribano, P., Julián-López, B., Planelles-Aragó, J., Cordoncillo, E., Viana, B., & Sanchez, C. (2008). Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials. Journal of Materials Chemistry, 18, 23–40.

Article  CAS  Google Scholar 

Shahi, P. K., Singh, A. K., Rai, S. B., & Ullrich, B. (2015). Lanthanide complexes for temperature sensing, UV light detection, and laser applications. Sensors and Actuators A, Physical, 222, 255–261.

Article  CAS  Google Scholar 

Sun, L., Qiu, Y., Liu, T., Feng, J., Deng, W., & Shi, L. (2015). Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation. Luminescence, 30, 1071–1076.

Article  PubMed  CAS  Google Scholar 

Prabakaran, E., & Pillay, K. (2020). Synthesis and characterization of fluorescent Europium (III) complex based on D-dextrose composite for latent fingerprint detection. Journal of the Saudi Chemical Society, 24, 584–605.

Article  CAS  Google Scholar 

Bao, G., Wen, S., Lin, G., Yuan, J., Lin, J., Wong, K.-L., Bünzli, J.-C.G., & Jin, D. (2021). Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coordination Chemistry Reviews, 429, Article 213642.

Article  CAS  Google Scholar 

Qin, X., Liu, X., Huang, W., Bettinelli, M., & Liu, X. (2017). Lanthanide-activated phosphors based on 4f–5d optical transitions: Theoretical and experimental aspects. Chemical Reviews, 117, 4488–4527.

Article  PubMed  CAS  Google Scholar 

Singh, A. K., Singh, S. K., & Rai, S. B. (2014). Role of Li+ ion in the luminescence enhancement of lanthanide ions: Favorable modifications in host matrices. RSC Advances, 4, 27039–27061.

Article  CAS  Google Scholar 

Khan, L. U., & Khan, Z. U. Rare earth luminescence: Electronic spectroscopy and applications. Handbook Materials Characterization, 2018, 345–404.

Weissman, S. I. (1942). Intramolecular energy transfer the fluorescence of complexes of europium. Journal of Chemical Physics, 10, 214–217.

Article  CAS  Google Scholar 

Khatri, S., Bala, M., Kumari, P., Kumar, M., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Optical and photophysical portrayal of Sm3+ complexes possessing two band gaps for relevance in solar cells and photovoltaic devices. Journal of Molecular Structure, 1260, Article 132847.

Article  CAS  Google Scholar 

Kumari, P., Khatri, S., Kumar, M., Ahlawat, P., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Urbach and Judd-ofelt analysis of crystalline samarium (III) complexes with β-ketocarboxylate and nitrogen donor secondary ligands. Polyhedron, 221, Article 115847.

Article  CAS  Google Scholar 

Khatri, S., Hooda, P., Ahlawat, P., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Optoelectronic and biological quantification of semi-conducting, crimson europium chelates with fluorinated β-keto acid and N-donor ancillary ligands. Research on Chemical Intermediates, 48, 1685–1716.

Article  CAS  Google Scholar 

Navami, D., Basavaraj, R. B., Sharma, S. C., Prasad, B. D., & Nagabhushana, H. (2018). Rapid identification of latent fingerprints, security ink and WLED applications of CaZrO3: Eu3+ fluorescent labelling agent fabricated via bio-template assisted combustion route. Journal of Alloys and Compounds, 762, 763–779.

Article  CAS  Google Scholar 

Wang, M., Li, M., Yu, A., Wu, J., & Mao, C. (2015). Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints. ACS Applied Materials & Interfaces, 7, 28110–28115.

Article  CAS  Google Scholar 

Wang, Y.-L., Li, C., Qu, H.-Q., Fan, C., Zhao, P.-J., Tian, R., & Zhu, M.-Q. (2020). Real-time fluorescence in situ visualization of latent fingerprints exceeding level 3 details based on aggregation-induced emission. Journal of the American Chemical Society, 142, 7497–7505.

Article  PubMed  CAS  Google Scholar 

Singh, R., Gupta, A. K., & Pradeep, C. P. (2021). Synthesis of a new series of organic solid-state near-infrared emitters: The role of crystal packing and weak intermolecular interactions and application in latent fingerprint detection. Crystal Growth & Design, 21, 1062–1076.

Article  CAS  Google Scholar 

Khatri, S., Bala, M., Kumari, P., Ahlawat, P., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Judd-ofelt, optical and photophysical analysis of β-ketocarboxylate Sm (III) complexes with N-donor aromatic system as secondary sensitizers. Optical Materials, 128, Article 112463.

Article  CAS  Google Scholar 

Sagdinc, S., & Bayarı, S. (2004). Spectroscopic studies on the interaction of ofloxacin with metals. Journal of Molecular Structure, 691, 107–113.

Article  CAS  Google Scholar 

Khanagwal, J., Khatkar, S. P., Dhankhar, P., Bala, M., Kumar, R., Boora, P., & Taxak, V. B. (2020). Synthesis and photoluminescence analysis of europium (III) complexes with pyrazole acid and nitrogen containing auxiliary ligands. Spectroscopy Letters, 53, 625–647.

Article  CAS  Google Scholar 

Bellamy, L. (2013). The infra-red spectra of complex molecules. Springer Science & Business Media.

Khanagwal, J., Kumar, R., Hooda, P., Khatkar, S. P., & Taxak, V. B. (2021). Designing of luminescent complexes of europium (III) ion with hydroxyl ketone and nitrogen donor secondary ligands for improving the luminescence performance and biological actions. Inorganica Chimica Acta, 525, Article 120463.

Article  CAS  Google Scholar 

Sultana, N., Arayne, M. S., Rizvi, S. B. S., Haroon, U., & Mesaik, M. A. (2013). Synthesis, spectroscopic, and biological evaluation of some levofloxacin metal complexes. Medicinal Chemistry Research, 22, 1371–1377.

Article  CAS  Google Scholar 

Panhwar, Q. K., & Memon, S. (2014). Synthesis, characterization and microbial evaluation of metal complexes of molybdenum with ofloxacin (levo (S-form) and dextro (R-form)) isomers. Journal of Modern Medicinal Chemistry, 2, 1–9.

Article  Google Scholar 

Liu, J.-Y., Ren, N., Zhang, J.-J., & Zhang, C.-Y. (2013). Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1, 10-phenanthroline. Thermochimica Acta, 570, 51–58.

Article  CAS  Google Scholar 

Nehra, K., Dalal, A., Hooda, A., Singh, S., Singh, D., & Kumar, S. (2022). Spectroscopic and optical investigation of 1, 10-phenanthroline based Tb (III) β-diketonate complexes. Inorganica Chimica Acta, 536, Article 120860.

Article  CAS  Google Scholar 

Hooda, A., Dalal, A., Nehra, K., Singh, S., Singh, D., Kumar, S., & Malik, R. S. (2022). Red luminous ternary europium complexes: Optoelectronic and photophysical analysis. Journal of Luminescence, 248, Article 118989.

Article  CAS  Google Scholar 

Nandal, P., Khatkar, S. P., Kumar, R., Khatkar, A., & Taxak, V. B. (2017). Synthesis, optical investigation and biological properties of europium (III) complexes with 2-(4-chlorophenyl)-1-(2-hydroxy-4-methoxyphenyl) ethan-1-one and ancillary ligands. Journal of Fluorescence, 27, 1–11.

Article  PubMed  CAS  Google Scholar 

Wang, Y., Zheng, X., Zhuang, W., & Jin, L. (2003). Hydrothermal synthesis and characterization of novel lanthanide 2, 2′-diphenyldicarboxylate complexes. European Journal of Inorganic Chemistry, 2003, 1355–1360.

Article  Google Scholar 

Bala, M., Kumar, S., Boora, P., Taxak, V. B., Khatkar, A., & Khatkar, S. P. (2014). Enhanced optoelectronics properties of europium (III) complexes with β-diketone and nitrogen heterocyclic ligands. Journal of Materials Science, Materials in Electronics, 25, 2850–2856.

Article  CAS  Google Scholar 

Werts, M. H. V., Jukes, R. T. F., & Verhoeven, J. W. (2002). The emission spectrum and the radiative lifetime of Eu 3+ in luminescent lanthanide complexes. Physical Chemistry Chemical Physics, 4, 1542–1548.

Comments (0)

No login
gif