Kuriki, K., Koike, Y., & Okamoto, Y. (2002). Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chemical Reviews, 102, 2347–2356.
Article PubMed CAS Google Scholar
Akerboom, S., van den Elshout, J. J. M. H., Mutikainen, I., Siegler, M. A., Fu, W. T., & Bouwman, E. (2013). Substituted phenanthrolines as antennae in luminescent EuIII complexes. European Journal of Inorganic Chemistry, 2013, 6137–6146.
Taxak, V. B., Kumar, R., Makrandi, J. K., & Khatkar, S. P. (2010). Luminescent properties of europium and terbium complexes with 2′-hydroxy-4′, 6′-dimethoxyacetophenone. Displays, 31, 116–121.
Luo, Y.-M., Chen, Z., Tang, R.-R., Xiao, L.-X., & Peng, H.-J. (2008). Investigations into the synthesis and fluorescence properties of Eu (III), Tb (III), Sm (III) and Gd (III) complexes of a novel bis-β-diketone-type ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 513–516.
Yuan, J., & Wang, G. (2006). Lanthanide-based luminescence probes and time-resolved luminescence bioassays. TrAC - Trends in Analytical Chemistry, 25, 490–500.
Zhang, X., Jin, X., & Li, Y. (2022). Water-induced luminescence improvement in a lanthanide β-diketone complex for monitoring water purity. Chinese Chemical Letters, 33, 2117–2120.
Escribano, P., Julián-López, B., Planelles-Aragó, J., Cordoncillo, E., Viana, B., & Sanchez, C. (2008). Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials. Journal of Materials Chemistry, 18, 23–40.
Shahi, P. K., Singh, A. K., Rai, S. B., & Ullrich, B. (2015). Lanthanide complexes for temperature sensing, UV light detection, and laser applications. Sensors and Actuators A, Physical, 222, 255–261.
Sun, L., Qiu, Y., Liu, T., Feng, J., Deng, W., & Shi, L. (2015). Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation. Luminescence, 30, 1071–1076.
Article PubMed CAS Google Scholar
Prabakaran, E., & Pillay, K. (2020). Synthesis and characterization of fluorescent Europium (III) complex based on D-dextrose composite for latent fingerprint detection. Journal of the Saudi Chemical Society, 24, 584–605.
Bao, G., Wen, S., Lin, G., Yuan, J., Lin, J., Wong, K.-L., Bünzli, J.-C.G., & Jin, D. (2021). Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coordination Chemistry Reviews, 429, Article 213642.
Qin, X., Liu, X., Huang, W., Bettinelli, M., & Liu, X. (2017). Lanthanide-activated phosphors based on 4f–5d optical transitions: Theoretical and experimental aspects. Chemical Reviews, 117, 4488–4527.
Article PubMed CAS Google Scholar
Singh, A. K., Singh, S. K., & Rai, S. B. (2014). Role of Li+ ion in the luminescence enhancement of lanthanide ions: Favorable modifications in host matrices. RSC Advances, 4, 27039–27061.
Khan, L. U., & Khan, Z. U. Rare earth luminescence: Electronic spectroscopy and applications. Handbook Materials Characterization, 2018, 345–404.
Weissman, S. I. (1942). Intramolecular energy transfer the fluorescence of complexes of europium. Journal of Chemical Physics, 10, 214–217.
Khatri, S., Bala, M., Kumari, P., Kumar, M., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Optical and photophysical portrayal of Sm3+ complexes possessing two band gaps for relevance in solar cells and photovoltaic devices. Journal of Molecular Structure, 1260, Article 132847.
Kumari, P., Khatri, S., Kumar, M., Ahlawat, P., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Urbach and Judd-ofelt analysis of crystalline samarium (III) complexes with β-ketocarboxylate and nitrogen donor secondary ligands. Polyhedron, 221, Article 115847.
Khatri, S., Hooda, P., Ahlawat, P., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Optoelectronic and biological quantification of semi-conducting, crimson europium chelates with fluorinated β-keto acid and N-donor ancillary ligands. Research on Chemical Intermediates, 48, 1685–1716.
Navami, D., Basavaraj, R. B., Sharma, S. C., Prasad, B. D., & Nagabhushana, H. (2018). Rapid identification of latent fingerprints, security ink and WLED applications of CaZrO3: Eu3+ fluorescent labelling agent fabricated via bio-template assisted combustion route. Journal of Alloys and Compounds, 762, 763–779.
Wang, M., Li, M., Yu, A., Wu, J., & Mao, C. (2015). Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints. ACS Applied Materials & Interfaces, 7, 28110–28115.
Wang, Y.-L., Li, C., Qu, H.-Q., Fan, C., Zhao, P.-J., Tian, R., & Zhu, M.-Q. (2020). Real-time fluorescence in situ visualization of latent fingerprints exceeding level 3 details based on aggregation-induced emission. Journal of the American Chemical Society, 142, 7497–7505.
Article PubMed CAS Google Scholar
Singh, R., Gupta, A. K., & Pradeep, C. P. (2021). Synthesis of a new series of organic solid-state near-infrared emitters: The role of crystal packing and weak intermolecular interactions and application in latent fingerprint detection. Crystal Growth & Design, 21, 1062–1076.
Khatri, S., Bala, M., Kumari, P., Ahlawat, P., Khatkar, S. P., Taxak, V. B., & Kumar, R. (2022). Judd-ofelt, optical and photophysical analysis of β-ketocarboxylate Sm (III) complexes with N-donor aromatic system as secondary sensitizers. Optical Materials, 128, Article 112463.
Sagdinc, S., & Bayarı, S. (2004). Spectroscopic studies on the interaction of ofloxacin with metals. Journal of Molecular Structure, 691, 107–113.
Khanagwal, J., Khatkar, S. P., Dhankhar, P., Bala, M., Kumar, R., Boora, P., & Taxak, V. B. (2020). Synthesis and photoluminescence analysis of europium (III) complexes with pyrazole acid and nitrogen containing auxiliary ligands. Spectroscopy Letters, 53, 625–647.
Bellamy, L. (2013). The infra-red spectra of complex molecules. Springer Science & Business Media.
Khanagwal, J., Kumar, R., Hooda, P., Khatkar, S. P., & Taxak, V. B. (2021). Designing of luminescent complexes of europium (III) ion with hydroxyl ketone and nitrogen donor secondary ligands for improving the luminescence performance and biological actions. Inorganica Chimica Acta, 525, Article 120463.
Sultana, N., Arayne, M. S., Rizvi, S. B. S., Haroon, U., & Mesaik, M. A. (2013). Synthesis, spectroscopic, and biological evaluation of some levofloxacin metal complexes. Medicinal Chemistry Research, 22, 1371–1377.
Panhwar, Q. K., & Memon, S. (2014). Synthesis, characterization and microbial evaluation of metal complexes of molybdenum with ofloxacin (levo (S-form) and dextro (R-form)) isomers. Journal of Modern Medicinal Chemistry, 2, 1–9.
Liu, J.-Y., Ren, N., Zhang, J.-J., & Zhang, C.-Y. (2013). Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1, 10-phenanthroline. Thermochimica Acta, 570, 51–58.
Nehra, K., Dalal, A., Hooda, A., Singh, S., Singh, D., & Kumar, S. (2022). Spectroscopic and optical investigation of 1, 10-phenanthroline based Tb (III) β-diketonate complexes. Inorganica Chimica Acta, 536, Article 120860.
Hooda, A., Dalal, A., Nehra, K., Singh, S., Singh, D., Kumar, S., & Malik, R. S. (2022). Red luminous ternary europium complexes: Optoelectronic and photophysical analysis. Journal of Luminescence, 248, Article 118989.
Nandal, P., Khatkar, S. P., Kumar, R., Khatkar, A., & Taxak, V. B. (2017). Synthesis, optical investigation and biological properties of europium (III) complexes with 2-(4-chlorophenyl)-1-(2-hydroxy-4-methoxyphenyl) ethan-1-one and ancillary ligands. Journal of Fluorescence, 27, 1–11.
Article PubMed CAS Google Scholar
Wang, Y., Zheng, X., Zhuang, W., & Jin, L. (2003). Hydrothermal synthesis and characterization of novel lanthanide 2, 2′-diphenyldicarboxylate complexes. European Journal of Inorganic Chemistry, 2003, 1355–1360.
Bala, M., Kumar, S., Boora, P., Taxak, V. B., Khatkar, A., & Khatkar, S. P. (2014). Enhanced optoelectronics properties of europium (III) complexes with β-diketone and nitrogen heterocyclic ligands. Journal of Materials Science, Materials in Electronics, 25, 2850–2856.
Werts, M. H. V., Jukes, R. T. F., & Verhoeven, J. W. (2002). The emission spectrum and the radiative lifetime of Eu 3+ in luminescent lanthanide complexes. Physical Chemistry Chemical Physics, 4, 1542–1548.
Comments (0)