Marzaman, A. N. F., Roska, T. P., Sartini, S., Utami, R. N., Sulistiawati, S., Enggi, C. K., Manggau, M. A., Rahman, L., Shastri, V. P., & Permana, A. D. (2023). Recent advances in pharmaceutical approaches of antimicrobial agents for selective delivery in various administration routes. Antibiotics, 12, 822–880.
Article CAS PubMed PubMed Central Google Scholar
WHO. (2024). WHO releases report on state of development of antibacterials. News release. https://www.who.int/news/item/14-06-2024-who-releases-report-on-state-of-development-of-antibacterials
Cooper, R., & Kirketerp-Møller, K. (2018). Non-antibiotic antimicrobial interventions and antimicrobial stewardship in wound care. Journal of Wound Care, 27, 355–377.
Jernej, L., Liu, J., Fefer, M., & Plaetzer, K. (2025). Chlorophyllin and sunlight against Penicillium digitatum: Exploring photodynamic inactivation as a green postharvest technology in citriculture. Photochemical & Photobiological Sciences, 24, 555–568.
Acosta, R. B., Durantini, E. N., & Spesia, M. B. (2024). Evaluation of quantification methods to determine photodynamic action on mono- and dual-species bacterial biofilms. Photochemical & Photobiological Sciences, 23, 1195–1208.
Alfei, S., Schito, G. C., Schito, A. M., & Zuccari, G. (2024). Reactive oxygen species (ROS)-mediated antibacterial oxidative therapies: Available methods to generate ROS and a novel option proposal. International Journal of Molecular Sciences, 25, 7182–7244.
Article CAS PubMed PubMed Central Google Scholar
Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G., & Roncucci, G. (2006). Photodynamic therapy in the treatment of microbial infections: Basic principles and perspectives applications. Lasers in Surgery and Medicine, 38, 468–481.
Domínguez, A. B., Ziental, D., Dlugaszewska, J., Sobotta, L., Torres, T., & Rodríguez-Morgade, M. S. (2025). Multicationic ruthenium phthalocyanines as photosensitizers for photodynamic inactivation of multiresistant microbes. European Journal of Medicinal Chemistry, 285, 117214.
Gao, L., Zhang, K., Wang, Y., Qin, C., Zhang, Y., Liu, Y., Liu, C., & Wan, Y. (2024). Curcumin-mediated photodynamic disinfection strategy with specific spectral range for mucoid Pseudomonas aeruginosa from hospital water. Journal of Photochemistry and Photobiology. B, Biology, 260, 113035.
Article CAS PubMed Google Scholar
Bartolomeu, M., Rocha, S., Cunha, Â., Neves, M. G. P. M. S., Faustino, M. A. F., & Almeida, A. (2016). Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus. Frontiers in Microbiology, 7, 267–278.
Article PubMed PubMed Central Google Scholar
Snell, S. B., Gill, A. L., Haidaris, C. G., Foster, T. H., Baran, T. M., & Gill, S. R. (2021). Staphylococcus aureus tolerance and genomic response to photodynamic inactivation. mSphere, 6, e00762-20.
Article PubMed PubMed Central Google Scholar
Kranjec, C., Morales Angeles, D., Torrissen Mårli, M., Fernández, L., García, P., Kjos, M., & Diep, D. B. (2021). Staphylococcal biofilms: Challenges and novel therapeutic perspectives. Antibiotics, 10, 131–159.
Article CAS PubMed PubMed Central Google Scholar
Karuppiah, V., Seralathan, M., & Mani, A. (2019). Hesperidin inhibits bio lm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: An in vitro and in silico approach. World Journal of Microbiology & Biotechnology, 35, 191–200.
Rapacka-Zdonczyk, A., Wozniak, A., Michalska, K., Pieranski, M., Ogonowska, P., Grinholc, M., & Nakonieczna, J. (2021). Factors determining the susceptibility of bacteria to antibacterial photodynamic inactivation. Frontiers in Medicine, 8, 642609.
Article PubMed PubMed Central Google Scholar
Scalise, I., & Durantini, E. N. (2005). Synthesis, properties and photodynamic inactivation of Escherichia coli using a cationic and a non-charged Zn(II) pyridyloxyphthalocyanine derivatives. Bioorganic & Medicinal Chemistry, 13, 2037–3045.
Spesia, M. B., Rovera, M., & Durantini, E. N. (2010). Photodynamic inactivation of Escherichia coli and Streptococcus mitis by cationic zinc(II) phthalocyanines in media with blood derivatives. European Journal of Medicinal Chemistry, 45, 2198–2205.
Article CAS PubMed Google Scholar
Spesia, M. B., Caminos, D. A., Pons, P., & Durantini, E. N. (2009). Mechanistic insight of the photodynamic inactivation of Escherichia coli by a tetracationic zinc(II)phthalocyanine derivative. Photodiagnosis and Photodynamic Therapy, 6, 52–61.
Article CAS PubMed Google Scholar
Caminos, D. A., Spesia, M. B., & Durantini, E. N. (2006). Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups. Photochemical & Photobiological Sciences, 5, 56–65.
Reynoso, E., Ferreyra, D. D., Durantini, E. N., & Spesia, M. B. (2019). Photodynamic inactivation to prevent and disrupt Staphylococcus aureus biofilm under different media conditions. Photodermatology, Photoimmunology & Photomedicine, 35, 322–331.
Bauer, A., & Kirby, W. (1966). Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology, 44, 493–496.
Clinical and Laboratory Standards Institute (CLSI M02). (2024). Performance standards for antimicrobial disk susceptibility tests. National Committee for Clinical Laboratory Standards. 14th Edition
Chaves, I., Morais, F. M. P., Vieira, C., Bartolomeu, M., Faustino, M. A. F., Neves, M. G. P. M. S., Almeida, A., & Moura, N. M. M. (2024). Can porphyrin−triphenylphosphonium conjugates enhance the photosensitizer performance toward bacterial strains? ACS Applied Bio Materials, 7, 5541–5552.
Article CAS PubMed PubMed Central Google Scholar
Gsponer, N. S., Spesia, M. B., & Durantini, E. N. (2015). Effect of divalent cations, EDTA and chitosan on the uptake and photoinactivation of Escherichia coli mediated by cationic and anionic porphyrin derivatives. Photodiagnosis and Photodynamic Therapy, 12, 67–75.
Article CAS PubMed Google Scholar
Spesia, M. B., & Durantini, E. N. (2022). Evolution of phthalocyanine structures as photodynamic agents for bacteria inactivation. Chemistry Record, 22(4), e202100292.
Youf, R., Müller, M., Balasini, A., Thétiot, F., Müller, M., Hascoët, A., Jonas, U., Schönherr, H., Lemercier, G., Montier, T., et al. (2021). Antimicrobial photodynamic therapy: Latest developments with a focus on combinatory strategies. Pharmaceutics, 13, 1995–2051.
Article CAS PubMed PubMed Central Google Scholar
Batishchev, O. V., Kalutskii, M. A., Varlamova, E. A., Konstantinova, A. N., Makrinsky, K. I., Ermakov, Y. A., Meshkov, I. N., Sokolov, V. S., & Gorbunova, Y. G. (2023). Antimicrobial activity of photosensitizers: Arrangement in bacterial membrane matters. Frontiers in Molecular Biosciences, 10, 1192794.
Article CAS PubMed PubMed Central Google Scholar
Pourhajibagher, M., Chiniforush, N., Shahabi, S., Ghorbanzadeh, R., & Bahador, A. (2016). Sub-lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 15, 159–166.
Article CAS PubMed Google Scholar
Alves, E., Faustino, M. A. F., Neves, M. G. P. M. S., Cunha, A., Tome, J., & Almeida, A. (2014). An insight on bacterial cellular targets of photodynamic inactivation. Future Medicinal Chemistry, 6, 141–164.
Article CAS PubMed Google Scholar
Jori, G., & Coppellotti, O. (2007). Inactivation of pathogenic microorganisms by photodynamic techniques: Mechanistic aspects and perspective applications. Anti-Infective Agents in Medicinal Chemistry, 6, 119–131.
Pedigo, L. A., Gibbs, A. J., Scott, R. J., & Street, C. N. (2009). Absence of bacterial resistance following repeat exposure to photodynamic therapy. In Proceedings of SPIE—The International Society for Optical Engineering, Photodynamic Therapy: Back to the Future (p. 73803H).
Giuliani, F., Martinelli, M., Cocchi, A., Arbia, D., Fantetti, L., & Roncucci, G. (2010). In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrobial Agents and Chemotherapy, 54(2), 637–642.
Article CAS PubMed Google Scholar
Marasini, S., Leanse, L. G., & Dai, T. (2021). Can microorganisms develop resistance against light based anti-infective agents? Advanced Drug Delivery Reviews, 175, 113822.
Article CAS PubMed Google Scholar
Nitzan, Y., & Ashkenazi, H. (2001). Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths. Current Microbiology, 42, 408–414.
Comments (0)