Evaluating bacterial resistance and virulence after photodynamic inactivation with zinc(II) 2,9,16,23-tetrakis[4-(-methylpyridyloxy)]phthalocyanine

Marzaman, A. N. F., Roska, T. P., Sartini, S., Utami, R. N., Sulistiawati, S., Enggi, C. K., Manggau, M. A., Rahman, L., Shastri, V. P., & Permana, A. D. (2023). Recent advances in pharmaceutical approaches of antimicrobial agents for selective delivery in various administration routes. Antibiotics, 12, 822–880.

Article  CAS  PubMed  PubMed Central  Google Scholar 

WHO. (2024). WHO releases report on state of development of antibacterials. News release. https://www.who.int/news/item/14-06-2024-who-releases-report-on-state-of-development-of-antibacterials

Cooper, R., & Kirketerp-Møller, K. (2018). Non-antibiotic antimicrobial interventions and antimicrobial stewardship in wound care. Journal of Wound Care, 27, 355–377.

Article  PubMed  Google Scholar 

Jernej, L., Liu, J., Fefer, M., & Plaetzer, K. (2025). Chlorophyllin and sunlight against Penicillium digitatum: Exploring photodynamic inactivation as a green postharvest technology in citriculture. Photochemical & Photobiological Sciences, 24, 555–568.

Article  CAS  Google Scholar 

Acosta, R. B., Durantini, E. N., & Spesia, M. B. (2024). Evaluation of quantification methods to determine photodynamic action on mono- and dual-species bacterial biofilms. Photochemical & Photobiological Sciences, 23, 1195–1208.

Article  CAS  Google Scholar 

Alfei, S., Schito, G. C., Schito, A. M., & Zuccari, G. (2024). Reactive oxygen species (ROS)-mediated antibacterial oxidative therapies: Available methods to generate ROS and a novel option proposal. International Journal of Molecular Sciences, 25, 7182–7244.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G., & Roncucci, G. (2006). Photodynamic therapy in the treatment of microbial infections: Basic principles and perspectives applications. Lasers in Surgery and Medicine, 38, 468–481.

Article  PubMed  Google Scholar 

Domínguez, A. B., Ziental, D., Dlugaszewska, J., Sobotta, L., Torres, T., & Rodríguez-Morgade, M. S. (2025). Multicationic ruthenium phthalocyanines as photosensitizers for photodynamic inactivation of multiresistant microbes. European Journal of Medicinal Chemistry, 285, 117214.

Article  PubMed  Google Scholar 

Gao, L., Zhang, K., Wang, Y., Qin, C., Zhang, Y., Liu, Y., Liu, C., & Wan, Y. (2024). Curcumin-mediated photodynamic disinfection strategy with specific spectral range for mucoid Pseudomonas aeruginosa from hospital water. Journal of Photochemistry and Photobiology. B, Biology, 260, 113035.

Article  CAS  PubMed  Google Scholar 

Bartolomeu, M., Rocha, S., Cunha, Â., Neves, M. G. P. M. S., Faustino, M. A. F., & Almeida, A. (2016). Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus. Frontiers in Microbiology, 7, 267–278.

Article  PubMed  PubMed Central  Google Scholar 

Snell, S. B., Gill, A. L., Haidaris, C. G., Foster, T. H., Baran, T. M., & Gill, S. R. (2021). Staphylococcus aureus tolerance and genomic response to photodynamic inactivation. mSphere, 6, e00762-20.

Article  PubMed  PubMed Central  Google Scholar 

Kranjec, C., Morales Angeles, D., Torrissen Mårli, M., Fernández, L., García, P., Kjos, M., & Diep, D. B. (2021). Staphylococcal biofilms: Challenges and novel therapeutic perspectives. Antibiotics, 10, 131–159.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karuppiah, V., Seralathan, M., & Mani, A. (2019). Hesperidin inhibits bio lm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: An in vitro and in silico approach. World Journal of Microbiology & Biotechnology, 35, 191–200.

Google Scholar 

Rapacka-Zdonczyk, A., Wozniak, A., Michalska, K., Pieranski, M., Ogonowska, P., Grinholc, M., & Nakonieczna, J. (2021). Factors determining the susceptibility of bacteria to antibacterial photodynamic inactivation. Frontiers in Medicine, 8, 642609.

Article  PubMed  PubMed Central  Google Scholar 

Scalise, I., & Durantini, E. N. (2005). Synthesis, properties and photodynamic inactivation of Escherichia coli using a cationic and a non-charged Zn(II) pyridyloxyphthalocyanine derivatives. Bioorganic & Medicinal Chemistry, 13, 2037–3045.

Article  Google Scholar 

Spesia, M. B., Rovera, M., & Durantini, E. N. (2010). Photodynamic inactivation of Escherichia coli and Streptococcus mitis by cationic zinc(II) phthalocyanines in media with blood derivatives. European Journal of Medicinal Chemistry, 45, 2198–2205.

Article  CAS  PubMed  Google Scholar 

Spesia, M. B., Caminos, D. A., Pons, P., & Durantini, E. N. (2009). Mechanistic insight of the photodynamic inactivation of Escherichia coli by a tetracationic zinc(II)phthalocyanine derivative. Photodiagnosis and Photodynamic Therapy, 6, 52–61.

Article  CAS  PubMed  Google Scholar 

Caminos, D. A., Spesia, M. B., & Durantini, E. N. (2006). Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups. Photochemical & Photobiological Sciences, 5, 56–65.

Article  CAS  Google Scholar 

Reynoso, E., Ferreyra, D. D., Durantini, E. N., & Spesia, M. B. (2019). Photodynamic inactivation to prevent and disrupt Staphylococcus aureus biofilm under different media conditions. Photodermatology, Photoimmunology & Photomedicine, 35, 322–331.

Article  CAS  Google Scholar 

Bauer, A., & Kirby, W. (1966). Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology, 44, 493–496.

Article  Google Scholar 

Clinical and Laboratory Standards Institute (CLSI M02). (2024). Performance standards for antimicrobial disk susceptibility tests. National Committee for Clinical Laboratory Standards. 14th Edition

Chaves, I., Morais, F. M. P., Vieira, C., Bartolomeu, M., Faustino, M. A. F., Neves, M. G. P. M. S., Almeida, A., & Moura, N. M. M. (2024). Can porphyrin−triphenylphosphonium conjugates enhance the photosensitizer performance toward bacterial strains? ACS Applied Bio Materials, 7, 5541–5552.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gsponer, N. S., Spesia, M. B., & Durantini, E. N. (2015). Effect of divalent cations, EDTA and chitosan on the uptake and photoinactivation of Escherichia coli mediated by cationic and anionic porphyrin derivatives. Photodiagnosis and Photodynamic Therapy, 12, 67–75.

Article  CAS  PubMed  Google Scholar 

Spesia, M. B., & Durantini, E. N. (2022). Evolution of phthalocyanine structures as photodynamic agents for bacteria inactivation. Chemistry Record, 22(4), e202100292.

Article  CAS  Google Scholar 

Youf, R., Müller, M., Balasini, A., Thétiot, F., Müller, M., Hascoët, A., Jonas, U., Schönherr, H., Lemercier, G., Montier, T., et al. (2021). Antimicrobial photodynamic therapy: Latest developments with a focus on combinatory strategies. Pharmaceutics, 13, 1995–2051.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Batishchev, O. V., Kalutskii, M. A., Varlamova, E. A., Konstantinova, A. N., Makrinsky, K. I., Ermakov, Y. A., Meshkov, I. N., Sokolov, V. S., & Gorbunova, Y. G. (2023). Antimicrobial activity of photosensitizers: Arrangement in bacterial membrane matters. Frontiers in Molecular Biosciences, 10, 1192794.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pourhajibagher, M., Chiniforush, N., Shahabi, S., Ghorbanzadeh, R., & Bahador, A. (2016). Sub-lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 15, 159–166.

Article  CAS  PubMed  Google Scholar 

Alves, E., Faustino, M. A. F., Neves, M. G. P. M. S., Cunha, A., Tome, J., & Almeida, A. (2014). An insight on bacterial cellular targets of photodynamic inactivation. Future Medicinal Chemistry, 6, 141–164.

Article  CAS  PubMed  Google Scholar 

Jori, G., & Coppellotti, O. (2007). Inactivation of pathogenic microorganisms by photodynamic techniques: Mechanistic aspects and perspective applications. Anti-Infective Agents in Medicinal Chemistry, 6, 119–131.

Article  CAS  Google Scholar 

Pedigo, L. A., Gibbs, A. J., Scott, R. J., & Street, C. N. (2009). Absence of bacterial resistance following repeat exposure to photodynamic therapy. In Proceedings of SPIE—The International Society for Optical Engineering, Photodynamic Therapy: Back to the Future (p. 73803H).

Giuliani, F., Martinelli, M., Cocchi, A., Arbia, D., Fantetti, L., & Roncucci, G. (2010). In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrobial Agents and Chemotherapy, 54(2), 637–642.

Article  CAS  PubMed  Google Scholar 

Marasini, S., Leanse, L. G., & Dai, T. (2021). Can microorganisms develop resistance against light based anti-infective agents? Advanced Drug Delivery Reviews, 175, 113822.

Article  CAS  PubMed  Google Scholar 

Nitzan, Y., & Ashkenazi, H. (2001). Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths. Current Microbiology, 42, 408–414.

Article 

Comments (0)

No login
gif