Mayer, G., & Heckel, A. (2006). Biologically active molecules with a “light switch.” Angewandte Chemie International Edition, 45(30), 4900–4921. https://doi.org/10.1002/chin.200647267
Article CAS PubMed Google Scholar
Adams, S. R., & Tsien, R. Y. (1993). Controlling cell chemistry with caged compounds. Annual Review of Physiology, 55(1), 755–784. https://doi.org/10.1146/annurev.physiol.55.1.755
Article CAS PubMed Google Scholar
Shembekar, V. R., Chen, Y., Carpenter, B. K., & Hess, G. P. (2005). A protecting group for carboxylic acids that can be photolyzed by visible light. Biochemistry, 44(19), 7107–7114. https://doi.org/10.1021/bi047665o
Article CAS PubMed Google Scholar
Wilcox, M., Viola, R. W., Johnson, K. W., Billington, A. P., Carpenter, B. K., McCray, J. A., Guzikowski, A. P., & Hess, G. P. (1990). Synthesis of photolabile precursors of amino acid neurotransmitters. The Journal of Organic Chemistry, 55(5), 1585–1589. https://doi.org/10.1021/jo00292a038
Zayat, L., Calero, C., Alborés, P., Baraldo, L., & Etchenique, R. (2003). A new strategy for neurochemical photodelivery: Metal−ligand heterolytic cleavage. Journal of the American Chemical Society, 125(4), 882–883. https://doi.org/10.1021/ja0278943
Article CAS PubMed Google Scholar
Nikolenko, V., Yuste, R., Zayat, L., Baraldo, L. M., & Etchenique, R. (2005). Two-photon uncaging of neurochemicals using inorganic metal complexes. Chemical Communications, 13, 1752. https://doi.org/10.1039/b418572b
Filevich, O., Salierno, M., & Etchenique, R. (2010). A caged nicotine with nanosecond range kinetics and visible light sensitivity. Journal of Inorganic Biochemistry, 104(12), 1248–1251. https://doi.org/10.1016/j.jinorgbio.2010.08.003
Article CAS PubMed Google Scholar
Havrylyuk, D., Stevens, K., Parkin, S., & Glazer, E. C. (2020). Toward optimal Ru(II) photocages: Balancing photochemistry, stability, and biocompatibility through fine tuning of steric, electronic, and physiochemical features. Inorganic Chemistry, 59(2), 1006–1013. https://doi.org/10.1021/acs.inorgchem.9b02065
Article CAS PubMed PubMed Central Google Scholar
Farrer, N. J., Salassa, L., & Sadler, P. J. (2009). Photoactivated chemotherapy (PACT): The potential of excited-state d-block metals in medicine. Dalton Transactions, 48, 10690–10701. https://doi.org/10.1039/b917753a
Balzani, V., Bergamini, G., Campagna, S., & Puntoriero, F. (2007). Photochemistry and photophysics of coordination compounds: overview and general concepts (pp. 1–36). Springer. https://doi.org/10.1007/128_2007_132
Joshi, T., Pierroz, V., Mari, C., Gemperle, L., Ferrari, S., & Gasser, G. (2014). A bis(Dipyridophenazine)(2-(2-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) complex with anticancer action upon photodeprotection. Angewandte Chemie, International Edition, 53(11), 2960–2963. https://doi.org/10.1002/anie.201309576
Article CAS PubMed Google Scholar
Hakkennes, M. L. A., Meijer, M. S., Menzel, J. P., Goetz, A.-C., VanDuijn, R., Siegler, M. A., Buda, F., & Bonnet, S. (2023). Ligand rigidity steers the selectivity and efficiency of the photosubstitution reaction of strained ruthenium polypyridyl complexes. Journal of the American Chemical Society, 145, 13420. https://doi.org/10.1021/jacs.3c03543
Article CAS PubMed PubMed Central Google Scholar
Bonnet, S., & Collin, J. (2008). Cheminform abstract: Ruthenium-based light-driven molecular machine prototypes: Synthesis and properties. ChemInform. https://doi.org/10.1002/chin.200837257
Bessel, C. A., Margarucci, J. A., Acquaye, J. H., Rubino, R. S., Crandall, J., Jircitano, A. J., & Takeuchi, K. J. (1993). Steric ligand effects of six bidentate bipyridyl ligands. Inorganic Chemistry, 32(25), 5779–5784. https://doi.org/10.1021/ic00077a021
Sullivan, B. P., Salmon, D. J., & Meyer, T. J. (1978). Mixed phosphine 2,2’-bipyridine complexes of ruthenium. Inorganic Chemistry, 17(12), 3334–3341. https://doi.org/10.1021/ic50190a006
Zayat, L., Salierno, M., & Etchenique, R. (2006). Ruthenium (II) bipyridyl complexes as photolabile caging groups for amines. Inorganic Chemistry, 45(4), 1728–1731. https://doi.org/10.1021/ic0512983
Article CAS PubMed Google Scholar
Montalti, M., Credi, A., Prodi, L., & Gandolfi, M. T. (2006). Handbook of photochemistry. CRC Press. https://doi.org/10.1201/9781420015195
Shah, N., Karnik, R., Darji, S., Devkar, R. V., Banerjee, D., & Chakraborty, D. (2024). Photoactive ruthenium polypyridine cage incorporating doxorubicin: Synthesis, photorelease, and photocytotoxicity of doxorubicin with blue light. Inorganic Chemistry Communications, 167, Article 112573. https://doi.org/10.1016/j.inoche.2024.112573
Zayat, L., Noval, M. G., Campi, J., Calero, C. I., Calvo, D. J., & Etchenique, R. (2007). A new inorganic photolabile protecting group for highly efficient visible light GABA uncaging. ChemBioChem, 8(17), 2035–2038. https://doi.org/10.1002/cbic.200700354
Article CAS PubMed Google Scholar
Ali, I., Wani, W. A., & Saleem, K. (2013). Empirical formulae to molecular structures of metal complexes by molar conductance. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43(9), 1162–1170. https://doi.org/10.1080/15533174.2012.756898
Li, A., Turro, C., & Kodanko, J. J. (2018). Ru(II) polypyridyl complexes derived from tetradentate ancillary ligands for effective photocaging. Accounts of Chemical Research, 51(6), 1415–1421. https://doi.org/10.1021/acs.accounts.8b00066
Article CAS PubMed PubMed Central Google Scholar
Knoll, J. D., Albani, B. A., & Turro, C. (2015). New Ru (II) complexes for dual photoreactivity: Ligand exchange and 1O2 generation. Accounts of Chemical Research, 48(8), 2280–2287. https://doi.org/10.1021/acs.accounts.5b00227
Article CAS PubMed PubMed Central Google Scholar
Karnik, R., Vohra, A., Khatri, M., Dalvi, N., Vyas, H. S., Shah, H., Gohil, S., Kanojiya, S., & Devkar, R. (2024). Diet/photoperiod mediated changes in cerebellar clock genes causes locomotor shifts and imperative changes in BDNF-TrkB pathway. Neuroscience Letters, 835, Article 137843. https://doi.org/10.1016/j.neulet.2024.137843
Article CAS PubMed Google Scholar
Vohra, A., Karnik, R., Desai, M., Vyas, H., Kulshrestha, S., Upadhyay, K. K., Koringa, P., & Devkar, R. (2024). Melatonin-mediated corrective changes in gut microbiota of experimentally chronodisrupted C57BL/6J mice. Chronobiology International, 41(4), 548–560. https://doi.org/10.1080/07420528.2024.2329205
Article CAS PubMed Google Scholar
Jagadeeshaprasad, M. G., Govindappa, P. K., Nelson, A. M., Noble, M. D., & Elfar, J. C. (2022). 4-aminopyridine induces nerve growth factor to improve skin wound healing and tissue regeneration. Biomedicines, 10(7), 1649. https://doi.org/10.3390/biomedicines10071649
Article CAS PubMed PubMed Central Google Scholar
Sun, Z., Sun, L., & Tu, L. (2020). GABAB receptor-mediated PI3K/AKT signaling pathway alleviates oxidative stress and neuronal cell injury in a rat model of Alzheimer’s disease. Journal of Alzheimer S Disease, 76(4), 1513–1526. https://doi.org/10.3233/jad-191032
Wang, Y., Legendre, P., Huang, J., Wang, W., Wu, S., & Li, Y. (2008). The effect of serotonin on GABA synthesis in cultured rat spinal dorsal horn neurons. Journal of Chemical Neuroanatomy, 36(3–4), 150–159. https://doi.org/10.1016/j.jchemneu.2008.07.001
Article CAS PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al. (2014). Gaussian Development Version, revision H.35. Gaussian, Inc.: Wallingford, CT.
Andrae, D., Huermann, U., Dolg, M., Stoll, H., & Preu, H. (1990). Energy-adjusted initio pseudopotentials for the second and third-row transition elements. Theoretica Chimica Acta, 77(2), 123–141. https://doi.org/10.1007/bf01114537
Comments (0)