Bouas-Laurent, H., & Dürr, H. (2001). Organic photochromism. International Union of Pure and Applied Chemistry, 73(4), 639–665. https://doi.org/10.1351/pac200173040639
Dürr, H., & Bouas-Laurent, H. (Eds.). (2003). Photochromism: Molecules and systems (Rev ed.). Elsevier Science.
Feringa, B. L., & Browne, W. R. (Eds.). (2011). Molecular switches (2nd ed.). Wiley.
Irie, M. (2021). Diarylethene molecular photoswitches: Concepts and functionalities. Wiley.
Irie, M. (2000). Diarylethenes for memories and switches. Chemical Reviews, 100(5), 1685–1716. https://doi.org/10.1021/cr980069d
Article CAS PubMed Google Scholar
Irie, M., Fukaminato, T., Matsuda, K., & Kobatake, S. (2014). Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chemical Review, 114(24), 12174–12277. https://doi.org/10.1021/cr500249p
Irie, M., & Mohri, M. (1988). Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. The Journal of Organic Chemistry, 53(4), 803–808. https://doi.org/10.1021/jo00239a022
Li, Z., Zeng, X., Gao, C., Song, J., He, F., He, T., Guo, H., & Yin, J. (2023). Photoswitchable diarylethenes: From molecular structures to biological applications. Coordination Chemistry Reviews, 497, Article 215451. https://doi.org/10.1016/j.ccr.2023.215451
Fukumoto, S., Nakagawa, T., Kawai, S., Nakashima, T., & Kawai, T. (2011). Syntheses and photochromic properties of diaryl acenaphthylene derivatives. Dyes and Pigments, 89(3), 297–304. https://doi.org/10.1016/j.dyepig.2010.04.004
Yamada, M., Sawazaki, T., Fujita, M., Asanoma, F., Nishikawa, Y., & Kawai, T. (2022). Tetrathienyl corannulene compounds with highly sensitive photochromism. Chemistry—A European Journal, 28(49), Article e202201286. https://doi.org/10.1002/chem.202201286
Article CAS PubMed Google Scholar
Ferrer, M. B., Harada, D., Martin, C. J., Métivier, R., Allain, C., Nakatani, K., Louis, M., Kawaguchi, N., Yanagida, T., Yasuhara, K., & Kawai, T. (2024). Cascade fluorescence modulation in photochromic microcapsules. ACS Applied Materials and Interfaces, 16(42), 57626–57635. https://doi.org/10.1021/acsami.4c09023
Article CAS PubMed Google Scholar
Morinaka, K., Ubukata, T., & Yokoyama, Y. (2009). Structurally versatile novel photochromic bisarylindenone and its acetal: Achievement of large cyclization quantum yield. Organic Letters, 11(17), 3890–3893. https://doi.org/10.1021/ol901497t
Article CAS PubMed Google Scholar
Suzuki, K., Ubukata, T., & Yokoyama, Y. (2012). Dual-mode fluorescence switching of photochromic bisthiazolylcoumarin. Chemical Communications, 48(5), 11838–11840. https://doi.org/10.1039/c1cc16516j
Ogawa, H., Takagi, K., Ubukata, T., Okamoto, A., Yonezawa, N., Delbaere, S., & Yokoyama, Y. (2012). Bisarylindenols: Fixation of conformation leads to exceptional properties of photochromism based on 6π-electrocyclization. Chemical Communications, 48(97), 11838–11840. https://doi.org/10.1039/c2cc35793c
Article CAS PubMed Google Scholar
Herder, M., Eisenreich, F., Bonasera, A., Grafl, A., Grubert, L., Pätzel, M., Schwarz, J., & Hecht, S. (2017). Light-controlled reversible modulation of frontier molecular orbital energy levels in trifluoromethylated diarylethenes. Chemistry—A European Journal, 23(15), 3743–3754. https://doi.org/10.1002/chem.201605511
Article CAS PubMed Google Scholar
Glebov, E. M., Semionova, V. V., Lazareva, S. K., Smolentsev, A. B., Fedunov, R. G., Shirinian, V. Z., & Lvov, A. G. (2022). Solvent dependent photoswitching and emission of diarylethenes with a π-conjugated push-pull system. Journal of Luminescence, 241, Article 118472. https://doi.org/10.1016/j.jlumin.2021.118472
Lvov, A. G., Yokoyama, Y., & Shirinian, V. Z. (2020). Post-modification of the ethene bridge in the rational design of photochromic diarylethenes. The Chemical Record, 20(1), 51–63. https://doi.org/10.1002/tcr.201900015
Article CAS PubMed Google Scholar
Kitagawa, D., Nakahama, T., Nakai, Y., & Kobatake, S. (2019). 1,2-Diarylbenzene as fast T-type photochromic switch. Journal of Materials Chemistry C, 7(10), 2865–2870. https://doi.org/10.1039/C8TC05357J
Nakagawa, T., Kato, R., Iiyoshi, Y., Furuya, M., Kitano, T., Nakamura, R., Yokoyama, Y., & Ubukata, T. (2024). A chiral photoswitch based on enantiospecific interconversion between binaphthyl and helicenoid skeletons. Chemical Communications, 60(39), 5149–5152. https://doi.org/10.1039/d4cc00364k
Article CAS PubMed Google Scholar
Fukaminato, T. (2011). Single-molecule fluorescence photoswitching: Design and synthesis of photoswitchable fluorescent molecules. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(3), 177–208. https://doi.org/10.1016/j.jphotochemrev.2011.08.006
Fukaminato, T., Ishida, S., & Métivier, R. (2018). Photochromic fluorophores at the molecular and nanoparticle levels: Fundamentals and applications of diarylethenes. NPG Asia Materials, 10, 859–881. https://doi.org/10.1038/s41427-018-0075-9
Pu, S.-Z., Sun, Q., Fan, C.-B., Wang, R.-J., & Liu, G. (2016). Recent advances in diarylethene-based multi-responsive molecular switches. Journal of Materials Chemistry C, 4(15), 3075–3093. https://doi.org/10.1039/c6tc00110f
Raymo, F. M., & Tomasulo, M. (2005). Fluorescence modulation with photochromic switches. The Journal of Physical Chemistry A, 109(33), 7343–7352. https://doi.org/10.1021/jp052440o
Article CAS PubMed Google Scholar
Qi, Q., Li, C., Liu, X., Jiang, S., Xu, Z., Lee, R., Zhu, M., Xu, B., & Tian, W. (2017). Solid-state photoinduced luminescence switch for advanced anticounterfeiting and super-resolution imaging applications. Journal of the American Chemical Society, 139(45), 16036–16039. https://doi.org/10.1021/jacs.7b07738
Article CAS PubMed Google Scholar
Ishida, S., Fukaminato, T., Kim, S., Ogata, T., & Kurihara, S. (2017). Sequential red-green-blue (RGB) fluorescence color photoswitching in multicomponent photochromic fluorescent nanoparticles. Chemistry Letters, 46(8), 1182–1185. https://doi.org/10.1246/cl.170436
Shimizu, K., Métivier, R., & Kobatake, S. (2020). Synthesis and fluorescence on/off switching of hyperbranched polymers having diarylethene at the branching point. Journal of Photochemistry and Photobiology—A Chemistry, 390, Article 112341. https://doi.org/10.1016/j.jphotochem.2019.112341
Ikariko, I., Deguchi, S., Fabre, N., Ishida, S., Kim, S., Kurihara, S., Métivier, R., & Fukaminato, T. (2020). Highly-stable red-emissive photochromic nanoparticles based on a diarylethene-perylenebisimide dyad. Dyes and Pigments, 180, Article 108490. https://doi.org/10.1016/j.dyepig.2020.108490
Nakagawa, T., Miyasaka, Y., & Yokoyama, Y. (2018). Photochromism of a spiro-functionalized diarylethene derivative: Multi-colour fluorescence modulation with a photon-quantitative photocyclization reactivity. Chemical Communications, 54(26), 3207–3210. https://doi.org/10.1039/c8cc00566d
Article CAS PubMed Google Scholar
Jeong, Y.-C., Yang, S. I., Ahn, K.-H., & Kim, E. (2005). Highly fluorescent photochromic diarylethene in the closed-ring form. Chemical Communications, 19, 2503–2505. https://doi.org/10.1039/b501324k
Fukaminato, T., Tanaka, M., Kuroki, L., & Irie, M. (2008). Invisible photochromism of diarylethene derivatives. Chemical Communications, 33, 3924–3926. https://doi.org/10.1039/b804137g
Jeong, Y.-C., Park, D. G., Lee, I. S., Yang, S. I., & Ahn, K.-H. (2009). Highly fluorescent photochromic diarylethene with an excellent fatigue property. Journal of Materials Chemistry, 19(1), 97–103. https://doi.org/10.1039/b814040e
Uno, K., Niikura, H., Morimoto, M., Ishibashi, Y., Miyasaka, H., & Irie, M. (2011). In situ preparation of highly fluorescent dyes upon photoirradiation. Journal of the American Chemical Society, 133(34), 13558–13564. https://doi.org/10.1021/ja204583e
Comments (0)