Tuning of photophysical, photo- and electrochemical properties of unsymmetrical D–A–A systems based on cymantrenyl diimides

Zhang, D., Li, C., Zhang, G., Tian, J., & Tian, Z. (2024). Phototunable and photopatternable polymer semiconductors. Accounts of Chemical Research, 57, 625–635. https://doi.org/10.1021/acs.accounts.3c00750

Article  CAS  Google Scholar 

Zhang, Y., Wang, Y., Gao, C., Ni, Z., Zhang, X., Hu, W., & Dong, H. (2023). Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chemical Society Reviews, 52, 1331–1381. https://doi.org/10.1039/D2CS00720G

Article  PubMed  CAS  Google Scholar 

Jiang, D., Tan, V. G. W., Gong, Y., Shao, H., Mu, X., Luo, Z., & He, S. (2025). Semiconducting covalent organic frameworks. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.4c00950

Article  PubMed  Google Scholar 

Takeda, Y. (2024). Modulating the photophysical properties of twisted donor–acceptor–donor π-conjugated molecules: Effect of heteroatoms, molecular conformation, and molecular topology. Accounts of Chemical Research, 57, 2219–2232. https://doi.org/10.1021/acs.accounts.4c00353

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim, T. J., Lee, S., Kwon, D., & Joo, J. (2024). Interlayer and intermolecular excitons in various donor–acceptor heterostructures: Applications to excitonic devices. Journal Of Materials Chemistry C, 12, 404–437. https://doi.org/10.1039/D3TC03676F

Article  CAS  Google Scholar 

Yang, W.-C., Li, S.-Y., Ni, S., & Liu, G. (2024). Advances in FRET-based biosensors from donor–acceptor design to applications. Aggregate, 5, e460. https://doi.org/10.1002/agt2.460

Article  CAS  Google Scholar 

Wang, L., Liu, L., Li, Y., Xu, Y., Nie, W., Cheng, Z., Zhou, Q., Wang, L., & Fan, Z. (2024). Molecular-level regulation strategies toward efficient charge separation in donor–acceptor type conjugated polymers for boosted energy-related photocatalysis. Advanced Energy Materials, 14, 2303346. https://doi.org/10.1002/aenm.202303346

Article  CAS  Google Scholar 

Ersoy, G., & Henary, M. (2025). Roadmap for designing donor-π-acceptor fluorophores in UV-Vis and NIR regions: Synthesis, optical properties and applications. Biomolecules, 15, 119. https://doi.org/10.3390/biom15010119

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang, L., & Zhu, W. (2024). Organic donor–acceptor systems for photocatalysis. Advanced Science, 11, 2307227. https://doi.org/10.1002/advs.202307227

Article  PubMed  CAS  Google Scholar 

Cepa-López, V., Sánchez-Fuente, M., Moya, A., & Mas-Ballesté, R. (2025). Recent developments in the use of covalent organic frameworks for photocatalytic water decontamination. Inorganics, 13, 152. https://doi.org/10.3390/inorganics13050152

Article  CAS  Google Scholar 

Barman, S., Pal, A., Mukherjee, A., Paul, S., Datta, A., & Ghosh, S. (2024). Supramolecular organic ferroelectric materials from donor–acceptor systems. Chemistry: A European Journal, 30, e202303120. https://doi.org/10.1002/chem.202303120

Article  PubMed  CAS  Google Scholar 

Tian, L., Liu, C., & Huang, F. (2024). Recent progress in side chain engineering of Y-series non-fullerene molecule and polymer acceptors. Science China Chemistry, 67, 788–805. https://doi.org/10.1007/s11426-023-1774-6

Article  CAS  Google Scholar 

Tang, A., Cong, P., Dai, T., Wang, Z., & Zhou, E. (2024). A2–A1–D–A1–A2-type nonfullerene acceptors. Advanced Materials, 36, 2300175. https://doi.org/10.1002/adma.202300175

Article  CAS  Google Scholar 

Xiao, B., Tang, A., Zhang, O., Li, G., Wang, X., & Zhou, E. (2018). A2–A1–D–A1–A2 type non-fullerene acceptors with 2-(1,1-dicyanomethylene)rhodanine as the terminal groups for poly(3-hexylthiophene)-based organic solar cells. ACS Applied Materials & Interfaces, 10, 34427–34434. https://doi.org/10.1021/acsami.8b10312

Article  CAS  Google Scholar 

Wang, L., Wang, L., Xu, Y., Sun, G., Nie, W., Liu, L., Kong, D., Pan, Y., Zhang, Y., Wang, H., Huang, Y., Liu, Z., Ren, H., Wei, T., Himeda, Y., & Fan, Z. (2024). Schottky junction and D-A1–A2 system dual regulation of covalent triazine frameworks for highly efficient CO2 photoreduction. Advanced Materials, 36, 2309376. https://doi.org/10.1002/adma.202309376

Article  CAS  Google Scholar 

Wang, T., Weerasinghe, K. C., Sun, H., Hu, X., Lu, T., Liu, D., Hu, W., Li, W., Zhou, X., & Wang, L. (2016). Effect of triplet state on the lifetime of charge separation in ambipolar D–A1–A2 organic semiconductors. The Journal of Physical Chemistry C, 120, 11338–11349. https://doi.org/10.1021/acs.jpcc.6b01321

Article  CAS  Google Scholar 

Loong, H., Zhou, J., Jiang, N., Feng, Y., Xie, G., Liu, L., & Xie, Z. (2022). Photoinduced cascading charge transfer in perylene bisimide-based triads. The Journal of Physical Chemistry B, 126, 2441–2448. https://doi.org/10.1021/acs.jpcb.2c00965

Article  PubMed  CAS  Google Scholar 

Asir, S., Demir, A. S., & Icil, H. (2010). The synthesis of novel, unsymmetrically substituted, chiral naphthalene and perylene diimides: Photophysical, electrochemical, chiroptical and intramolecular charge transfer properties. Dyes and Pigments, 84, 1–13. https://doi.org/10.1016/j.dyepig.2009.04.014

Article  CAS  Google Scholar 

Đorđević, L., Haines, P., Cacioppo, M., Arcudi, F., Scharl, T., Cadranel, A., Guldi, D. M., & Prato, M. (2020). Synthesis and excited state processes of arrays containing amine-rich carbon dots and unsymmetrical rylene diimides. Materials Chemistry Frontiers, 4, 3640–3648. https://doi.org/10.1039/D0QM00407C

Article  Google Scholar 

Moharana, P., & Santosh, G. (2024). Controlled aggregation of unsymmetrical amphiphilic perylene diimide derivative into nanosheets. Journal of Molecular Structure, 1307, 138026. https://doi.org/10.1016/j.molstruc.2024.138026

Article  CAS  Google Scholar 

Kihal, N., Nazemi, A., & Bourgault, S. (2022). Supramolecular nanostructures based on perylene diimide bioconjugates: From self-assembly to applications. Nanomaterials (Basel), 12, 1223. https://doi.org/10.3390/nano12071223

Article  PubMed  CAS  Google Scholar 

Maret, P. D., Sasikumar, D., Sebastian, E., & Hariharan, M. (2023). Symmetry-breaking charge separation in a chiral bis(perylenediimide) probed at ensemble and single-molecule levels. The Journal of Physical Chemistry Letters, 14(38), 8667–8675. https://doi.org/10.1021/acs.jpclett.3c01889

Article  PubMed  CAS  Google Scholar 

Martin, I. J., Shih, K.-C., Nieh, M.-P., & Kasi, R. M. (2020). Templated supramolecular structures of multichromic, multiresponsive perylene diimide-polydiacetylene films. Macromolecules, 53, 4501–4510. https://doi.org/10.1021/acs.macromol.0c00390

Article  CAS  Google Scholar 

Yuen, J. D., Pozdin, V. A., Young, A. T., Turner, B. L., Giles, I. D., Naciri, J., Trammell, S. A., Charles, P. T., Stenger, D. A., & Daniele, M. A. (2020). Perylene-diimide-based n-type semiconductors with enhanced air and temperature stable photoconductor and transistor properties. Dyes and Pigments, 174, 108014. https://doi.org/10.1016/j.dyepig.2019.108014

Article  CAS  Google Scholar 

Tao, J., Zhang, J., Song, Y., Liu, J., & Xu, H.-J. (2022). Two asymmetrical perylene diimide derivatives: Synthesis, optical-electrochemical properties and morphologies of self-assembly. Journal of Solid State Chemistry, 305, 122665. https://doi.org/10.1016/j.jssc.2021.122665

Article  CAS  Google Scholar 

Varol, T. Ö., Avcı, O., Haklı, Ö., Xue, C., Li, Q., & Anık, Ü. (2020). An unsymmetrical perylene diimide dye modified carbon felt electrode as a novel electrochemical platform for dopamine detection. ChemistrySelect, 5, 11698. https://doi.org/10.1002/slct.202002744

Article  CAS  Google Scholar 

Glosz, K., Ledwon, P., Motyka, R., Stolarczyk, A., Gusev, I., Blacha-Grzechnik, A., Waskiewicz, S., Kaluzynski, P., & Lapkowski, M. (2022). Functionalized polysiloxanes with perylene diimides and poly(ethylene glycol): Synthesis and properties. European Polymer Journal, 162, 110878. https://doi.org/10.1016/j.eurpolymj.2021.110878

Article  CAS  Google Scholar 

Yigit, E., Sevgili, Ö., Bayindir, S., Akman, F., Orak, İ, & Dayan, O. (2022). The synthesis and photoelectrical performances of perylenediimide-based devices as an interface layer in metal-organic-semiconductors. Materials Science and Engineering: B, 286, 116036. https://doi.org/10.1016/j.mseb.2022.116036

Article  CAS  Google Scholar 

Robb, M. J., Newton, B., Fors, B. P., & Hawker, C. J. (2014). One-step synthesis of unsymmetrical N-alkyl-N′-aryl perylene diimides. The Journal of Organic Chemistry, 79, 6360–6365. https://doi.org/10.1021/jo500945k

Article  PubMed  CAS  Google Scholar 

Chen, J., Zhang, W., Wang, L., & Yu, G. (2023). Recent research progress of organic small-molecule semiconductors with high electron mobilities. A

Comments (0)

No login
gif