Blood flow restriction modulates common drive to motor units and force precision: implications for neuromuscular coordination

Avrillon S, Del Vecchio A, Farina D et al (2021) Individual differences in the neural strategies to control the lateral and medial head of the quadriceps during a mechanically constrained task. J Appl Physiol 130:269–281. https://doi.org/10.1152/japplphysiol.00653.2020

Article  PubMed  Google Scholar 

Berger DJ, d’Avella A (2014) Effective force control by muscle synergies. Front Comput Neurosci 8:46. https://doi.org/10.3389/fncom.2014.00046

Article  PubMed  PubMed Central  Google Scholar 

Biazon TMPC, Ugrinowitsch C, Soligon SD et al (2019) The association between muscle deoxygenation and muscle hypertrophy to blood flow restricted training performed at high and low loads. Front Physiol 10:446. https://doi.org/10.3389/fphys.2019.00446

Article  PubMed  PubMed Central  Google Scholar 

Boonstra TW, Daffertshofer A, van Ditshuizen JC et al (2008) Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs. J Electromyogr Kinesiol 18:717–731. https://doi.org/10.1016/j.jelekin.2007.03.005

Article  CAS  PubMed  Google Scholar 

Cabral HV, Cudicio A, Bonardi A et al (2024) Neural filtering of physiological tremor oscillations to spinal motor neurons mediates short-term acquisition of a skill learning task. eNeuro 11:ENEURO.0043-24.2024. https://doi.org/10.1523/ENEURO.0043-24.2024

Article  PubMed  PubMed Central  Google Scholar 

Castronovo AM, Negro F, Conforto S et al (2015) The proportion of common synaptic input to motor neurons increases with an increase in net excitatory input. J Appl Physiol 119:1337–1346. https://doi.org/10.1152/japplphysiol.00255.2015

Article  CAS  PubMed  Google Scholar 

Castronovo AM, Mrachacz-Kersting N, Stevenson AJT et al (2018) Decrease in force steadiness with aging is associated with increased power of the common but not independent input to motor neurons. J Neurophysiol 120:1616–1624. https://doi.org/10.1152/jn.00093.2018

Article  PubMed  PubMed Central  Google Scholar 

Chen CY, McGee CW, Rich TL et al (2018) Reference values of intrinsic muscle strength of the hand of adolescents and young adults. J Hand Ther 31:348–356. https://doi.org/10.1016/j.jht.2017.05.012

Article  PubMed  Google Scholar 

Chen YC, Shih CL, Lin YT et al (2019) The effect of visuospatial resolution on discharge variability among motor units and force-discharge relation. Chin J Physiol 62:166–174. https://doi.org/10.4103/CJP.CJP_12_19

Article  PubMed  Google Scholar 

Chen YC, Su YH, Lin YT et al (2020) Acute physiological responses to combined blood flow restriction and low-level laser. Eur J Appl Physiol 120:1437–1447. https://doi.org/10.1007/s00421-020-04378-6

Article  CAS  PubMed  Google Scholar 

Chen YC, Lin YT, Hu CL et al (2023) Low-level laser therapy facilitates postcontraction recovery with ischemic preconditioning. Med Sci Sports Exerc 55:1326–1333. https://doi.org/10.1249/MSS.0000000000003149

Article  CAS  PubMed  Google Scholar 

Chen YC, Wu CC, Lin YT et al (2025) Adaptive modification in agonistcommon drive after Combined blood flow restriction and neuromuscular electrical stimulation. IEEE Trans Neural Syst Rehabil Eng. https://doi.org/10.1109/TNSRE.2025.3525517

Article  PubMed  PubMed Central  Google Scholar 

Christiansen D, Eibye KH, Rasmussen V et al (2019) Cycling with blood flow restriction improves performance and muscle K+ regulation and alters the effect of antioxidant infusion in humans. J Physiol 597:2421–2444. https://doi.org/10.1113/JP277657

Article  CAS  PubMed  PubMed Central  Google Scholar 

Condello F, Cacia M, Sturla M et al (2022) Simultaneous radial and ipsilateral ulnar artery compression versus isolated radial artery compression after conventional radial access for coronary angiography and/or intervention: a systematic review and meta-analysis. J Clin Med 11(23):7013. https://doi.org/10.3390/jcm11237013

Article  PubMed  PubMed Central  Google Scholar 

Contessa P, Adam A, De Luca CJ (2009) Motor unit control and force fluctuation during fatigue. J Appl Physiol 107:235–243. https://doi.org/10.1152/japplphysiol.00035.2009

Article  PubMed  PubMed Central  Google Scholar 

Copithorne DB, Hali K, Rice CL (2021) The effect of blood flow on tibialis anterior motor unit firing rates during sustained low-intensity isometric contractions. Appl Physiol Nutr Metab 46:63–68. https://doi.org/10.1139/apnm-2020-0437

Article  CAS  PubMed  Google Scholar 

De Luca CJ, Erim Z (1994) Common drive of motor units in regulation of muscle force. Trends Neurosci 17:299–305. https://doi.org/10.1016/0166-2236(94)90064-7

Article  PubMed  Google Scholar 

De Luca CJ, Erim Z (2002) Common drive in motor units of a synergistic muscle pair. J Neurophysiol 87:2200–2204. https://doi.org/10.1152/jn.00793.2001

Article  PubMed  Google Scholar 

De Luca CJ, LeFever RS, McCue MP et al (1982) Control scheme governing concurrently active human motor units during voluntary contractions. J Physiol 329:129–142. https://doi.org/10.1113/jphysiol.1982.sp014294

Article  PubMed  PubMed Central  Google Scholar 

De Luca CJ, Adam A, Wotiz R et al (2006) Decomposition of surface EMG signals. J Neurophysiol 96:1646–1657. https://doi.org/10.1152/jn.00009.2006

Article  PubMed  Google Scholar 

De Luca CJ, Nawab SH, Kline JC (2015) Clarification of methods used to validate surface EMG decomposition algorithms as described by Farina et al. (2014). J Appl Physiol 118:1084. https://doi.org/10.1152/japplphysiol.00061.2015

Article  PubMed  PubMed Central  Google Scholar 

Farina D, Enoka RM (2011) Surface EMG decomposition requires an appropriate validation. J Neurophysiol 105:981–982. https://doi.org/10.1152/jn.00855.2010

Article  PubMed  Google Scholar 

Farina D, Negro F (2015) Common synaptic input to motor neurons, motor unit synchronization, and force control. Exerc Sport Sci Rev 43:23–33. https://doi.org/10.1249/JES.0000000000000032

Article  PubMed  Google Scholar 

Fatela P, Reis JF, Mendonca GV et al (2016) Acute effects of exercise under different levels of blood-flow restriction on muscle activation and fatigue. Eur J Appl Physiol 116:985–995. https://doi.org/10.1007/s00421-016-3359-1

Article  PubMed  Google Scholar 

Fatela P, Mendonca G, Veloso A et al (2019) Blood flow restriction alters motor unit behavior during resistance exercise. Int J Sports Med 40:555–562. https://doi.org/10.1055/a-0888-8816

Article  PubMed  Google Scholar 

Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725

Article  CAS  PubMed  Google Scholar 

García-Manso JM, Rodríguez-Ruiz D, Rodríguez-Matoso D, de Saa Y, Sarmiento S, Quiroga M (2011) Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J Sports Sci 29(6):619–625. https://doi.org/10.1080/02640414.2010.548822

Article  PubMed  Google Scholar 

Grønfeldt BM, Lindberg Nielsen J, Mieritz RM et al (2020) Effect of blood-flow restricted vs heavy-load strength training on muscle strength: systematic review and meta-analysis. Scand J Med Sci Sports 30:837–848. https://doi.org/10.1111/sms.13632

Article  PubMed  Google Scholar 

Hug F, Del Vecchio A, Avrillon S et al (2021) Muscles from the same muscle group do not necessarily share common drive: evidence from the human triceps surae. J Appl Physiol 130:342–354. https://doi.org/10.1152/japplphysiol.00635.2020

Article  PubMed  Google Scholar 

Husmann F, Mittlmeier T, Bruhn S et al (2018) Impact of blood flow restriction exercise on muscle fatigue development and recovery. Med Sci Sports Exerc 50:436–446. https://doi.org/10.1249/MSS.0000000000001475

Article 

Comments (0)

No login
gif