Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332. https://doi.org/10.1152/physrev.00015.2007
Article CAS PubMed Google Scholar
Andersen V, Hermans E, Vereide V, Stien N, Paulsen G, Baláš J, Michailov ML, Pedersen H, Saeterbakken AH (2023) Comparison of finger flexor resistance training, with and without blood flow restriction, on perceptional and physiological responses in advanced climbers. Sci Rep 13(1):1. https://doi.org/10.1038/s41598-023-30499-x
Aune TK, Aune MA, Ettema G, Vereijken B (2013) Comparison of bilateral force deficit in proximal and distal joints in upper extremities. Hum Mov Sci 32(3):436–444. https://doi.org/10.1016/j.humov.2013.01.005
Article CAS PubMed Google Scholar
Baláš J, Pecha O, Martin AJ, Cochrane D (2012) Hand–arm strength and endurance as predictors of climbing performance. Eur J Sport Sci 12(1):16–25. https://doi.org/10.1080/17461391.2010.546431
Barstow TJ (2019) Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol 126(5):1360–1376. https://doi.org/10.1152/japplphysiol.00166.2018
Article CAS PubMed Google Scholar
Beaume J, Di Domenico H, Bowen M, Hintzy F, Millet GY, Pageaux B, Debevec T, Rupp T (2025) Neuromuscular fatigue induced by cycling at a fixed level of perceived effort: effects of different purported hypoxic methods. Scand J Med Sci Sports 35(2):e70021. https://doi.org/10.1111/sms.70021
Biazon TMPC, Ugrinowitsch C, Soligon SD, Oliveira RM, Bergamasco JG, Borghi-Silva A, Libardi CA (2019) The association between muscle deoxygenation and muscle hypertrophy to blood flow restricted training performed at high and low loads. Front Physiol 10:446. https://doi.org/10.3389/fphys.2019.00446
Article PubMed PubMed Central Google Scholar
Bohm S, Mersmann F, Arampatzis A (2015) Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open 1(1):7. https://doi.org/10.1186/s40798-015-0009-9
Article PubMed PubMed Central Google Scholar
Borg G (1998) Borg’s perceived exertion and pain scales. Human kinetics
Boyas S, Guével A (2011) Neuromuscular fatigue in healthy muscle: Underlying factors and adaptation mechanisms. Ann Phys Rehabil Medi 54(2):88–108
Broxterman RM, Layec G, Hureau TJ, Amann M, Richardson RS (2017) Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. J Appl Physiol 122(5):1208–1217. https://doi.org/10.1152/japplphysiol.01093.2016
Article PubMed PubMed Central Google Scholar
Bryk FF, Dos Reis AC, Fingerhut D, Araujo T, Schutzer M, Cury RDPL, Duarte A, Fukuda TY (2016) Exercises with partial vascular occlusion in patients with knee osteoarthritis: a randomized clinical trial. Knee Surg Sports Traumatol Arthrosc 24(5):1580–1586. https://doi.org/10.1007/s00167-016-4064-7
Byrne C, Twist C, Eston R (2004) Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med 34(1):49–69. https://doi.org/10.2165/00007256-200434010-00005
Carr JC, Bemben MG, Black CD, Ye X, Defreitas JM (2021) Bilateral deficit in strength but not rapid force during maximal handgrip contractions. Eur J Sport Sci 21(6):836–843. https://doi.org/10.1080/17461391.2020.1800104
Cohen J (1988) Statistical power analysis for the behavioral sciences. Routledge. https://doi.org/10.4324/9780203771587
Cook SB, Clark BC, Ploutz-Snyder LL (2007) Effects of exercise load and blood-flow restriction on skeletal muscle function. Med Sci Sports Exerc 39(10):1708–1713. https://doi.org/10.1249/mss.0b013e31812383d6
Cook SB, Murphy BG, Labarbera KE (2013) Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc 45(1):67–74. https://doi.org/10.1249/MSS.0b013e31826c6fa8
Devise M, Lechaptois C, Berton E, Vigouroux L (2022) Effects of different hangboard training intensities on finger grip strength, stamina, and endurance. Front Sports Act Living 4:862782. https://doi.org/10.3389/fspor.2022.862782
Article PubMed PubMed Central Google Scholar
Downs ME, Hackney KJ, Martin D, Caine TL, Cunningham D, O’connor DP, Ploutz-Snyder LL (2014) Acute vascular and cardiovascular responses to blood flow-restricted exercise. Med Sci Sports Exerc 46(8):1489. https://doi.org/10.1249/MSS.0000000000000253
Article CAS PubMed Google Scholar
Draper N, Giles D, Schöffl V, Konstantin Fuss F, Watts P, Wolf P, Baláš J, Espana-Romero V, Blunt Gonzalez G, Fryer S, Fanchini M, Vigouroux L, Seifert L, Donath L, Spoerri M, Bonetti K, Phillips K, Stöcker U, Bourassa-Moreau F, Garrido I, Drum S, Beekmeyer S, Ziltener J-L, Taylor N, Beeretz I, Mally F, Amca AM, Linhart C, Abreu E (2015) Comparative grading scales, statistical analyses, climber descriptors and ability grouping: International Rock Climbing Research Association position statement. Sports Technol 8(3–4):88–94. https://doi.org/10.1080/19346182.2015.1107081
Dugashvili G, Van den Berghe L, Menabde G, Janelidze M, Marks L (2017) Use of the universal pain assessment tool for evaluating pain associated with TMD in youngsters with an intellectual disability. Med Oral Patol Oral Cir Bucal 22(1):e88–e94. https://doi.org/10.4317/medoral.21584
Article CAS PubMed Google Scholar
Fatela P, Reis JF, Mendonca GV, Freitas T, Valamatos MJ, Avela J, Mil-Homens P (2018) Acute neuromuscular adaptations in response to low-intensity blood-flow restricted exercise and high-intensity resistance exercise: are there any differences? J Strength Cond Res 32(4):902–910. https://doi.org/10.1519/JSC.0000000000002022
Ferraz RB, Gualano B, Rodrigues R, Kurimori CO, Fuller R, Lima FR, De Sá-Pinto AL, Roschel H (2018) Benefits of resistance training with blood flow restriction in knee osteoarthritis. Med Sci Sports Exerc 50(5):897–905. https://doi.org/10.1249/MSS.0000000000001530
Fisher JP, Steele J (2017) Heavier and lighter load resistance training to momentary failure produce similar increases in strength with differing degrees of discomfort. Muscle Nerve 56(4):797–803. https://doi.org/10.1002/mus.25537
Franz A, Berndt F, Raabe J, Harmsen J-F, Zilkens C, Behringer M (2020) Invasive assessment of hemodynamic, metabolic and ionic consequences during blood flow restriction training. Front Physiol 11:617668. https://doi.org/10.3389/fphys.2020.617668
Article PubMed PubMed Central Google Scholar
Freitas E, Poole C, Miller R, Heishman A, Kaur J, Bemben D, Bemben M (2017) Time course change in muscle swelling : high-intensity vs. blood flow restriction exercise. Int J Sports Med 38(13):1009–1016. https://doi.org/10.1055/s-0043-118342
Furrer R, Handschin C (2024) Molecular aspects of the exercise response and training adaptation in skeletal muscle. Free Radic Biol Med 223:53–68. https://doi.org/10.1016/j.freeradbiomed.2024.07.026
Article CAS PubMed PubMed Central Google Scholar
Gabbett TJ, Oetter E (2025) From tissue to system : what constitutes an appropriate response to loading? Sports Med 55(1):17–35. https://doi.org/10.1007/s40279-024-02126-w
Giles D, Hartley C, Maslen H, Hadley J, Taylor N, Torr O, Chidley J, Randall T, Fryer S (2021) An all-out test to determine finger flexor critical force in rock climbers. Int J Sports Physiol Perform 16(7):942–949. https://doi.org/10.1123/ijspp.2020-0637
Grønfeldt BM, Lindberg Nielsen J, Mieritz RM, Lund H, Aagaard P (2020) Effect of blood-flow restricted vs heavy-load strength training on muscle strength: systematic review and meta-analysis. Scand J Med Sci Sports 30(5):837–848. https://doi.org/10.1111/sms.13632
Hammert WB, Kataoka R, Yamada Y, Song JS, Loenneke JP (2024) Blood flow restriction training attenuates changes in local muscle endurance: at odds with previous work? Exp Physiol 109(8):1395–1398. https://doi.org/10.1113/EP091924
Comments (0)