Sex differences in beat-to-beat blood pressure variability following isometric handgrip exercise

Baross AW, Kay AD, Baxter BA, Wright BH, McGowan CL, Swaine IL (2022) Effects of isometric resistance training and detraining on ambulatory blood pressure and morning blood pressure surge in young normotensives. Front Physiol 13:958135. https://doi.org/10.3389/fphys.2022.958135

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burke D, Sundlöf G, Wallin BG (1977) Postural effects on muscle nerve sympathetic activity in man. J Physiol 272:399–414. https://doi.org/10.1113/jphysiol.1977.sp012051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlson DJ, Dieberg G, Hess NC, Millar PJ, Smart NA (2014) Isometric exercise training for blood pressure management: a systematic review and meta-analysis. Mayo Clin Proc 89:327–334. https://doi.org/10.1016/j.mayocp.2013.10.030

Article  PubMed  Google Scholar 

Cornelissen VA, Smart NA (2013) Exercise training for blood pressure: a systematic review and meta-analysis. JAHA 2:e004473. https://doi.org/10.1161/JAHA.112.004473

Article  PubMed  PubMed Central  Google Scholar 

Dawson SL, Manktelow BN, Robinson TG, Panerai RB, Potter JF (2000) Which parameters of beat-to-beat blood pressure and variability best predict early outcome after acute ischemic stroke? Stroke 31:463–468. https://doi.org/10.1161/01.str.31.2.463

Article  CAS  PubMed  Google Scholar 

Edwards JJ, Deenmamode AHP, Griffiths M, Arnold O, Cooper NJ, Wiles JD, O’Driscoll JM (2023) Exercise training and resting blood pressure: a large-scale pairwise and network meta-analysis of randomised controlled trials. Br J Sports Med 57:1317–1326. https://doi.org/10.1136/bjsports-2022-106503

Article  PubMed  Google Scholar 

Edwards JJ, Coleman DA, Ritti-Dias RM, Farah BQ, Stensel DJ, Lucas SJE, Millar PJ, Gordon BDH, Cornelissen V, Smart NA, Carlson DJ, McGowan C, Swaine I, Pescatello LS, Howden R, Bruce-Low S, Farmer CKT, Leeson P, Sharma R, O’Driscoll JM (2024) Isometric exercise training and arterial hypertension: an updated review. Sports Med 54:1459–1497. https://doi.org/10.1007/s40279-024-02036-x

Article  PubMed  PubMed Central  Google Scholar 

Fairfax ST, Holwerda SW, Credeur DP, Zuidema MY, Medley JH, Dyke Ii PC, Wray DW, Davis MJ, Fadel PJ (2013) The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man. J Physiol 591:3637–3649. https://doi.org/10.1113/jphysiol.2013.250894

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gratz I, Kraidin J, Jacobi AG, deCastro NG, Spagna P, Larijani GE (1992) Continuous noninvasive cardiac output as estimated from the pulse contour curve. J Clin Monit Comput 8:20–27. https://doi.org/10.1007/BF01618083

Article  CAS  Google Scholar 

Guerrero RVD, Sabino-Carvalho JL, Brandão PRP et al (2025a) Reduced resting beat-to-beat blood pressure variability in patients with Parkinson’s disease. Auton Neurosci 261:103332. https://doi.org/10.1016/j.autneu.2025.103332

Article  PubMed  Google Scholar 

Guerrero RVD, Vianna LC, Lehnen GCS et al (2025b) Resting beat-to-beat blood pressure variability in humans: role of alpha-1 adrenergic receptors. Clin Auton Res 35:277–284. https://doi.org/10.1007/s10286-024-01105-5

Article  PubMed  Google Scholar 

Hart ECJ, Charkoudian N (2014) Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology 29:8–15. https://doi.org/10.1152/physiol.00031.2013

Article  CAS  PubMed  Google Scholar 

Inder JD, Carlson DJ, Dieberg G, McFarlane JR, Hess NC, Smart NA (2016) Isometric exercise training for blood pressure management: a systematic review and meta-analysis to optimize benefit. Hypertens Res 39:88–94. https://doi.org/10.1038/hr.2015.111

Article  PubMed  Google Scholar 

Kissell CE, Young BE, Jarrard CP, Huang M, Allen DR, Okuda DT, Smith SA, Fadel PJ, Davis SL (2024) Reduced resting beat-to-beat blood pressure variability in females with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 83:105416. https://doi.org/10.1016/j.msard.2023.105416

Article  PubMed  Google Scholar 

Kneale BJ, Chowienczyk PJ, Brett SE, Coltart DJ, Ritter JM (2000) Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J Am Coll Cardiol 36:1233–1238. https://doi.org/10.1016/S0735-1097(00)00849-4

Article  CAS  PubMed  Google Scholar 

Millar PJ, MacDonald MJ, Bray SR, McCartney N (2009) Isometric handgrip exercise improves acute neurocardiac regulation. Eur J Appl Physiol 107:509–515. https://doi.org/10.1007/s00421-009-1142-2

Article  PubMed  Google Scholar 

Millar PJ, Levy AS, McGowan CL, McCartney N, MacDonald MJ (2013) Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scandinavian Med Sci Sports 23:620–626. https://doi.org/10.1111/j.1600-0838.2011.01435.x

Article  CAS  Google Scholar 

Parati G, Ochoa JE, Lombardi C, Bilo G (2013) Assessment and management of blood-pressure variability. Nat Rev Cardiol 10:143–155. https://doi.org/10.1038/nrcardio.2013.1

Article  PubMed  Google Scholar 

Parati G, Stergiou GS, Dolan E, Bilo G (2018) Blood pressure variability: clinical relevance and application. J of Clinical Hypertension 20:1133–1137. https://doi.org/10.1111/jch.13304

Article  Google Scholar 

Robertson RJ, Goss FL, Rutkowski J, Lenz B, Dixon C, Timmer J, Frazee K, Dube J, Andreacci J (2003) Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sports Exerc 35:333–341. https://doi.org/10.1249/01.MSS.0000048831.15016.2A

Article  PubMed  Google Scholar 

Sabino-Carvalho JL, Jeong J, Sprick J, DaCosta D, Nardone M, Park J (2023) Augmented resting beat-to-beat blood pressure variability in patients with chronic kidney disease. Clin Auton Res 33:705–714. https://doi.org/10.1007/s10286-023-00979-1

Article  PubMed  PubMed Central  Google Scholar 

Samora M, Incognito AV, Vianna LC (2019a) Sex differences in blood pressure regulation during ischemic isometric exercise: the role of the β-adrenergic receptors. J Appl Physiol 127:408–414. https://doi.org/10.1152/japplphysiol.00270.2019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samora M, Teixeira AL, Sabino-Carvalho JL, Vianna LC (2019b) Spontaneous cardiac baroreflex sensitivity is enhanced during post-exercise ischemia in men but not in women. Eur J Appl Physiol 119:103–111. https://doi.org/10.1007/s00421-018-4004-y

Article  PubMed  Google Scholar 

Samora M, Teixeira AL, Sabino-Carvalho JL, Vianna LC (2020) Sex differences in cardiac vagal reactivation from the end of isometric handgrip exercise and at the onset of muscle metaboreflex isolation. Auton Neurosci 228:102714. https://doi.org/10.1016/j.autneu.2020.102714

Article  PubMed  Google Scholar 

Somers VK, Leo KC, Shields R, Clary M, Mark AL (1992) Forearm endurance training attenuates sympathetic nerve response to isometric handgrip in normal humans. J Appl Physiol 72:1039–1043. https://doi.org/10.1152/jappl.1992.72.3.1039

Article  CAS  PubMed  Google Scholar 

Taylor AC, Mccartney N, Kamath MV, Wiley RL (2003) Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc 35:251–256. https://doi.org/10.1249/01.MSS.0000048725.15026.B5

Article  PubMed  Google Scholar 

Taylor KA, Wiles JD, Coleman DD, Sharma R, O’Driscoll JM (2017) Continuous cardiac autonomic and hemodynamic responses to isometric exercise. Med Sci Sports Exerc 49:1511–1519. https://doi.org/10.1249/MSS.0000000000001271

Article  PubMed  Google Scholar 

Teixeira AL, Ritti-Dias R, Antonino D, Bottaro M, Millar PJ, Vianna LC (2018) Sex differences in cardiac baroreflex sensitivity after isometric handgrip exercise. Med Sci Sports Exerc 50:770–777. https://doi.org/10.1249/MSS.0000000000001487

Article  PubMed  Google Scholar 

Teixeira AL, Nardone M, Samora M, Fernandes IA, Ramos PS, Sabino-Carvalho JL, Ricardo DR, Millar PJ, Vianna LC (2022) Potentiation of GABAergic synaptic transmission by diazepam acutely increases resting beat-to-beat blood pressure variability in young adults. Am J Physiol-Regulatory Integr Comp Physiol 322:R501–R510. https://doi.org/10.1152/ajpregu.00291.2021

Article  CAS 

Comments (0)

No login
gif