Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S (2024) Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 11:1370951. https://doi.org/10.3389/fnut.2024.1370951
Article CAS PubMed PubMed Central Google Scholar
Ageing and health [Internet]. Available at: https://www.who.int/news-room/fact- sheets/detail/ageing-and-health (Accessed 24 March, 2025).
Zhang S, Li F, Zhou T, Wang G, Li Z (2020) Caenorhabditis elegans as a useful model for studying aging mutations. Front Endocrinol 11:554994. https://doi.org/10.3389/fendo.2020.554994
Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18:297–300
Article CAS PubMed Google Scholar
Hebert SS, Horre K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2009) MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis 33:422–428
Article CAS PubMed Google Scholar
Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, Lee JC, Saunders AJ (2008) MicroRNAs can regulate human APP levels. Mol Neurodegener 3:10
Article PubMed PubMed Central Google Scholar
Millan MJ (2017) Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review. Prog Neurobiol 156:1–68. https://doi.org/10.1016/j.pneurobio.2017.03.004
Article CAS PubMed Google Scholar
Shaheen N, Shaheen A, Osama M et al (2024) MicroRNAs regulation in Parkinson’s disease, and their potential role as diagnostic and therapeutic targets. npj Parkinsons Dis 10:186. https://doi.org/10.1038/s41531-024-00791-2
Goh SY, Chao YX, Dheen ST, Tan EK, Tay SS (2019) Role of MicroRNAs in Parkinson’s disease. Int J Mol Sci 20(22):5649. https://doi.org/10.3390/ijms20225649
Article CAS PubMed PubMed Central Google Scholar
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv 4:575–590
Kumar S, Reddy PH (2018) MicroRNA-455-3p as a potential biomarker for Alzheimer’s disease: an update. Front Aging Neurosci 10:41. https://doi.org/10.3389/fnagi.2018.00041
Article CAS PubMed PubMed Central Google Scholar
Hara N, Kikuchi M, Miyashita A, Hatsuta H, Saito Y, Kasuga K et al (2017) Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer’s disease. Acta Neuropathol Commun 5:10
Article PubMed PubMed Central Google Scholar
Asikainen S, Rudgalvyte M, Heikkinen L, Louhiranta K, Lakso M, Wong G, Nass R (2010) Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models. J Mol Neurosci : MN 41:210–218
Article CAS PubMed Google Scholar
Naidoo D, de Lencastre A (2024) Regulation of TIR-1/SARM-1 by miR-71 protects dopaminergic neurons in a C. elegans model of LRRK2-induced Parkinson’s disease. Int J Mol Sci 25(16):8795. https://doi.org/10.3390/ijms25168795
Evans B, Furlong HA 4th, de Lencastre A (2021) Parkinson’s disease and microRNAs - lessons from model organisms and human studies. Exp Gerontol 155:111585. https://doi.org/10.1016/j.exger.2021.111585
Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang C-C, Ueda M, Kristen AV et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21
Article CAS PubMed Google Scholar
DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ et al (2017) Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med 9:eaag0481
Khou X, Chen N (2017) Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer’s. Nutrients 9:927
Srivastava S, Sanchita Singh R et al (2018) Comparative study of Withanolide biosynthesis-related miRNAs in root and leaf tissues of Withania somnifera. Appl Biochem Biotechnol 185:1145–1159
Zhang T, Zhao Y-L, Zhao J-H, Wang S, Jin Y, Chen Z-Q, Fang Y-Y, Hua C-L, Ding S-W, Guo H-S (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants 2:16153
Article CAS PubMed Google Scholar
Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 5:279
Article PubMed PubMed Central Google Scholar
Gupta P, Goel R, Agarwal A et al (2015) Comparative transcriptome analysis of different chemotypes elucidates Withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci Rep 5:18611
Article CAS PubMed PubMed Central Google Scholar
Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141
Article CAS PubMed Google Scholar
Jan CH, Friedman RC, Ruby JG, Bartel DP (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469:97–101
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504
Article CAS PubMed PubMed Central Google Scholar
Jan K, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(suppl_2):W451–W454
Rehmsmeier M, Steffen P, Hoechsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes RNA, RNA 10:1507–1517
Conte D Jr, MacNeil LT, Walhout AJM, Mello CC (2015) RNA interference in Caenorhabditis elegans. Curr Protoc Mol Biol 109:26.3.1–26.3.30. https://doi.org/10.1002/0471142727.mb2603s109
Strange K (2008) C. elegans, Methods in molecular biology 351:978–1–58829–597–2 Springer
Murayama T, Maruyama IN (2018) Plate assay to determine Caenorhabditis elegans response to water soluble and volatile chemicals. Bio Protoc 8(4):e2740. https://doi.org/10.21769/BioProtoc.2740
Article PubMed PubMed Central Google Scholar
Shukla S, Saxena A, Shukla SK, Nazir A (2003) Modulation of neurotransmitter pathways and associated metabolites by systemic silencing of gut genes in C. elegans. Diagnostics 13:2322
Gupta RK, Srivastava BS, Srivastava R (2010) Comparative expression analysis of rpf-like genes of Mycobacterium tuberculosis H37Rv under different physiological stress and growth conditions. Microbiology (reading) 156(Pt 9):2714–2722. https://doi.org/10.1099/mic.0.037622-0
Article CAS PubMed Google Scholar
Ranjana Kishore, Valerio Arnaboldi, Ceri E Van Slyke, Juancarlos Chan, Robert S Nash, Jose M Urbano, Mary E Dolan, Stacia R Engel, Mary Shimoyama, Paul W Sternberg, the Alliance of Genome Resources, Automated generation of gene summaries at the Alliance of Genome Resources, Database, Volume 2020.
Asikainen S, Rudgalvyte M, Heikkinen L et al (2010) Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models. J Mol Neurosci 41:210–218
Article CAS PubMed Google Scholar
Lanoiselée HM, Nicolas G, Wallon D, Rovelet-Lecrux A, Lacour M, Rousseau S, Richard AC, Pasquier F, Rollin-Sillaire A, Martinaud O, Quillard-Muraine M, de la Sayette V, Boutoleau-Bretonniere C, Etcharry-Bouyx F, Chauviré V, Sarazin M, le Ber I, Epelbaum S, Jonveaux T, Rouaud O, Ceccaldi M, Félician O, Godefroy O, Formaglio M, Croisile B, Auriacombe S, Chamard L, Vincent JL, Sauvée M, Marelli-Tosi C, Gabelle A, Ozsancak C, Pariente J, Paquet C, Hannequin D, Campion D (2017) collaborators of the CNR-MAJ project. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med 14(3):e1002270
Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415
Article CAS PubMed PubMed Central Google Scholar
Queirós L, Marques C, Pereira JL, Gonçalves FJM, Aschner M, Pereira P (2021) Overview of chemotaxis behavior assays in Caenorhabditis elegans. Curr Protoc 1(5):e120. https://doi.org/10.1002/cpz1.120
Article PubMed PubMed Central Google Scholar
Kyriakou E, Taouktsi E, Syntichaki P (2022) The thermal stress coping network of the nematode Caenorhabditis elegans. Int J Mol Sci 23(23):14907. https://doi.org/10.3390/ijms232314907
Article CAS PubMed PubMed Central Google Scholar
Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783
Article CAS PubMed PubMed Central Google Scholar
Meijer HA, Smith EM, Bushell M (2014) Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans 42:1135–1140
Article CAS PubMed Google Scholar
Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221
Comments (0)