Hankey GJ (2017) Stroke. Lancet 389:641–654. https://doi.org/10.1016/S0140-6736(16)30962-X
Alishahi M, Ghaedrahmati F, Kolagar TA et al (2019) Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis 34:1243–1251. https://doi.org/10.1007/s11011-019-00423-2
Article CAS PubMed Google Scholar
Zhou X, Wang Z, Xu B et al (2021) Long non-coding RNA NORAD protects against cerebral ischemia/reperfusion injury induced brain damage, cell apoptosis, oxidative stress and inflammation by regulating miR-30a-5p/YWHAG. Bioengineered 12:9174–9188. https://doi.org/10.1080/21655979.2021.1995115
Article CAS PubMed PubMed Central Google Scholar
Shi K, Zou M, Jia D-M et al (2021) tPA Mobilizes immune cells that exacerbate hemorrhagic transformation in stroke. Circ Res 128:62–75. https://doi.org/10.1161/CIRCRESAHA.120.317596
Article CAS PubMed Google Scholar
Ye X, Shen T, Hu J et al (2017) Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol 292:46–55. https://doi.org/10.1016/j.expneurol.2017.03.002
Article CAS PubMed Google Scholar
Uzdensky AB (2019) Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24:687–702. https://doi.org/10.1007/s10495-019-01556-6
Article CAS PubMed Google Scholar
Lugovaya AV, Emanuel VS, Kalinina NM, et al (2020) Apoptosis and autophagy in the pathogenesis of acute ischemic stroke (review of literature). Klin Lab Diagn 65:428–434. https://doi.org/10.18821/0869-2084-2020-65-7-428-434
Tominaga M, Tominaga T (2005) Structure and function of TRPV1. Pflugers Arch 451:143–150. https://doi.org/10.1007/s00424-005-1457-8
Article CAS PubMed Google Scholar
Bujak JK, Kosmala D, Szopa IM et al (2019) Inflammation, cancer and immunity-implication of TRPV1 channel. Front Oncol 9:1087. https://doi.org/10.3389/fonc.2019.01087
Article PubMed PubMed Central Google Scholar
Stein AT, Ufret-Vincenty CA, Hua L et al (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522. https://doi.org/10.1085/jgp.200609576
Article CAS PubMed PubMed Central Google Scholar
Lau S-Y, Procko E, Gaudet R (2012) Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J Gen Physiol 140:541–555. https://doi.org/10.1085/jgp.201210810
Article CAS PubMed PubMed Central Google Scholar
Bevan S, Quallo T, Andersson DA (2014) TRPV1. Handb Exp Pharmacol 222:207–245. https://doi.org/10.1007/978-3-642-54215-2_9
Article CAS PubMed Google Scholar
Szteyn K, Rowan MP, Gomez R et al (2015) A-kinase anchoring protein 79/150 coordinates metabotropic glutamate receptor sensitization of peripheral sensory neurons. Pain 156:2364–2372. https://doi.org/10.1097/j.pain.0000000000000295
Article CAS PubMed PubMed Central Google Scholar
Jendryke T, Prochazkova M, Hall BE et al (2016) TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception. Sci Rep 6:22007. https://doi.org/10.1038/srep22007
Article CAS PubMed PubMed Central Google Scholar
Pareek TK, Keller J, Kesavapany S et al (2007) Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. Proc Natl Acad Sci U S A 104:660–665. https://doi.org/10.1073/pnas.0609916104
Article CAS PubMed Google Scholar
Liu J, Du J, Yang Y, Wang Y (2015) Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia. Exp Neurol 273:253–262. https://doi.org/10.1016/j.expneurol.2015.09.005
Article CAS PubMed Google Scholar
Agopyan N, Head J, Yu S, Simon SA (2004) TRPV1 receptors mediate particulate matter-induced apoptosis. Am J Physiol Lung Cell Mol Physiol 286:L563-572. https://doi.org/10.1152/ajplung.00299.2003
Article CAS PubMed Google Scholar
Leonelli M, Martins DO, Britto LRG (2011) TRPV1 receptors modulate retinal development. Int J Dev Neurosci 29:405–413. https://doi.org/10.1016/j.ijdevneu.2011.03.002
Article CAS PubMed Google Scholar
Vaidya B, Sharma SS (2020) Transient receptor potential channels as an emerging target for the treatment of Parkinson’s disease: an insight into role of pharmacological interventions. Front Cell Dev Biol 8:584513. https://doi.org/10.3389/fcell.2020.584513
Article PubMed PubMed Central Google Scholar
Wang Y-Y, Lee K-T, Lim MC, Choi J-H (2020) TRPV1 antagonist DWP05195 induces ER stress-dependent apoptosis through the ROS-p38-CHOP pathway in human ovarian cancer cells. Cancers (Basel) 12:1702. https://doi.org/10.3390/cancers12061702
Article CAS PubMed Google Scholar
Meloni BP, Milani D, Edwards AB et al (2015) Neuroprotective peptides fused to arginine-rich cell penetrating peptides: neuroprotective mechanism likely mediated by peptide endocytic properties. Pharmacol Ther 153:36–54. https://doi.org/10.1016/j.pharmthera.2015.06.002
Article CAS PubMed Google Scholar
Marino J, Maubert ME, Mele AR et al (2020) Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol Life Sci 77:5079–5099. https://doi.org/10.1007/s00018-020-03561-4
Article CAS PubMed PubMed Central Google Scholar
Pei D-S, Wang X-T, Liu Y et al (2006) Neuroprotection against ischaemic brain injury by a GluR6-9c peptide containing the TAT protein transduction sequence. Brain 129:465–479. https://doi.org/10.1093/brain/awh700
Haley TJ, Mccormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Brit J Pharm Chemoth 12:12–15. https://doi.org/10.1111/j.1476-5381.1957.tb01354.x
Chen J, Li Y, Wang L et al (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011. https://doi.org/10.1161/01.str.32.4.1005
Article CAS PubMed Google Scholar
Schallert T, Kozlowski DA, Humm JL, Cocke RR (1997) Use-dependent structural events in recovery of function. Adv Neurol 73:229–238
Song Y-J, Shi Y, Cui M-M et al (2020) H2S attenuates injury after ischemic stroke by diminishing the assembly of CaMKII with ASK1-MKK3-p38 signaling module. Behav Brain Res 384:112520. https://doi.org/10.1016/j.bbr.2020.112520
Article CAS PubMed Google Scholar
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. https://doi.org/10.1107/S0907444910007493
Article CAS PubMed PubMed Central Google Scholar
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334
Comments (0)