TAT-T407 Mitigates Apoptosis and Cognitive Impairments Following Cerebral Ischemia Through Disruption of TRPV1-CDK5 Interaction

Hankey GJ (2017) Stroke. Lancet 389:641–654. https://doi.org/10.1016/S0140-6736(16)30962-X

Article  PubMed  Google Scholar 

Alishahi M, Ghaedrahmati F, Kolagar TA et al (2019) Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis 34:1243–1251. https://doi.org/10.1007/s11011-019-00423-2

Article  CAS  PubMed  Google Scholar 

Zhou X, Wang Z, Xu B et al (2021) Long non-coding RNA NORAD protects against cerebral ischemia/reperfusion injury induced brain damage, cell apoptosis, oxidative stress and inflammation by regulating miR-30a-5p/YWHAG. Bioengineered 12:9174–9188. https://doi.org/10.1080/21655979.2021.1995115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi K, Zou M, Jia D-M et al (2021) tPA Mobilizes immune cells that exacerbate hemorrhagic transformation in stroke. Circ Res 128:62–75. https://doi.org/10.1161/CIRCRESAHA.120.317596

Article  CAS  PubMed  Google Scholar 

Ye X, Shen T, Hu J et al (2017) Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol 292:46–55. https://doi.org/10.1016/j.expneurol.2017.03.002

Article  CAS  PubMed  Google Scholar 

Uzdensky AB (2019) Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24:687–702. https://doi.org/10.1007/s10495-019-01556-6

Article  CAS  PubMed  Google Scholar 

Lugovaya AV, Emanuel VS, Kalinina NM, et al (2020) Apoptosis and autophagy in the pathogenesis of acute ischemic stroke (review of literature). Klin Lab Diagn 65:428–434. https://doi.org/10.18821/0869-2084-2020-65-7-428-434

Tominaga M, Tominaga T (2005) Structure and function of TRPV1. Pflugers Arch 451:143–150. https://doi.org/10.1007/s00424-005-1457-8

Article  CAS  PubMed  Google Scholar 

Bujak JK, Kosmala D, Szopa IM et al (2019) Inflammation, cancer and immunity-implication of TRPV1 channel. Front Oncol 9:1087. https://doi.org/10.3389/fonc.2019.01087

Article  PubMed  PubMed Central  Google Scholar 

Stein AT, Ufret-Vincenty CA, Hua L et al (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522. https://doi.org/10.1085/jgp.200609576

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau S-Y, Procko E, Gaudet R (2012) Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J Gen Physiol 140:541–555. https://doi.org/10.1085/jgp.201210810

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bevan S, Quallo T, Andersson DA (2014) TRPV1. Handb Exp Pharmacol 222:207–245. https://doi.org/10.1007/978-3-642-54215-2_9

Article  CAS  PubMed  Google Scholar 

Szteyn K, Rowan MP, Gomez R et al (2015) A-kinase anchoring protein 79/150 coordinates metabotropic glutamate receptor sensitization of peripheral sensory neurons. Pain 156:2364–2372. https://doi.org/10.1097/j.pain.0000000000000295

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jendryke T, Prochazkova M, Hall BE et al (2016) TRPV1 function is modulated by Cdk5-mediated phosphorylation: insights into the molecular mechanism of nociception. Sci Rep 6:22007. https://doi.org/10.1038/srep22007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pareek TK, Keller J, Kesavapany S et al (2007) Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. Proc Natl Acad Sci U S A 104:660–665. https://doi.org/10.1073/pnas.0609916104

Article  CAS  PubMed  Google Scholar 

Liu J, Du J, Yang Y, Wang Y (2015) Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia. Exp Neurol 273:253–262. https://doi.org/10.1016/j.expneurol.2015.09.005

Article  CAS  PubMed  Google Scholar 

Agopyan N, Head J, Yu S, Simon SA (2004) TRPV1 receptors mediate particulate matter-induced apoptosis. Am J Physiol Lung Cell Mol Physiol 286:L563-572. https://doi.org/10.1152/ajplung.00299.2003

Article  CAS  PubMed  Google Scholar 

Leonelli M, Martins DO, Britto LRG (2011) TRPV1 receptors modulate retinal development. Int J Dev Neurosci 29:405–413. https://doi.org/10.1016/j.ijdevneu.2011.03.002

Article  CAS  PubMed  Google Scholar 

Vaidya B, Sharma SS (2020) Transient receptor potential channels as an emerging target for the treatment of Parkinson’s disease: an insight into role of pharmacological interventions. Front Cell Dev Biol 8:584513. https://doi.org/10.3389/fcell.2020.584513

Article  PubMed  PubMed Central  Google Scholar 

Wang Y-Y, Lee K-T, Lim MC, Choi J-H (2020) TRPV1 antagonist DWP05195 induces ER stress-dependent apoptosis through the ROS-p38-CHOP pathway in human ovarian cancer cells. Cancers (Basel) 12:1702. https://doi.org/10.3390/cancers12061702

Article  CAS  PubMed  Google Scholar 

Meloni BP, Milani D, Edwards AB et al (2015) Neuroprotective peptides fused to arginine-rich cell penetrating peptides: neuroprotective mechanism likely mediated by peptide endocytic properties. Pharmacol Ther 153:36–54. https://doi.org/10.1016/j.pharmthera.2015.06.002

Article  CAS  PubMed  Google Scholar 

Marino J, Maubert ME, Mele AR et al (2020) Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol Life Sci 77:5079–5099. https://doi.org/10.1007/s00018-020-03561-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pei D-S, Wang X-T, Liu Y et al (2006) Neuroprotection against ischaemic brain injury by a GluR6-9c peptide containing the TAT protein transduction sequence. Brain 129:465–479. https://doi.org/10.1093/brain/awh700

Article  PubMed  Google Scholar 

Haley TJ, Mccormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Brit J Pharm Chemoth 12:12–15. https://doi.org/10.1111/j.1476-5381.1957.tb01354.x

Article  CAS  Google Scholar 

Chen J, Li Y, Wang L et al (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011. https://doi.org/10.1161/01.str.32.4.1005

Article  CAS  PubMed  Google Scholar 

Schallert T, Kozlowski DA, Humm JL, Cocke RR (1997) Use-dependent structural events in recovery of function. Adv Neurol 73:229–238

CAS  PubMed  Google Scholar 

Song Y-J, Shi Y, Cui M-M et al (2020) H2S attenuates injury after ischemic stroke by diminishing the assembly of CaMKII with ASK1-MKK3-p38 signaling module. Behav Brain Res 384:112520. https://doi.org/10.1016/j.bbr.2020.112520

Article  CAS  PubMed  Google Scholar 

Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. https://doi.org/10.1107/S0907444910007493

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

Article 

Comments (0)

No login
gif