Chen S, Cao Z, Nandi A, Counts N, Jiao L, Prettner K, Kuhn M, Seligman B et al (2024) The global macroeconomic burden of Alzheimer’s disease and other dementias: estimates and projections for 152 countries or territories. Lancet Glob Health 12(9):e1534–e1543. https://doi.org/10.1016/S2214-109X(24)00264-X
Article CAS PubMed Google Scholar
Nandi A, Counts N, Broker J, Malik S, Chen S, Han R, Klusty J, Seligman B et al (2024) Cost of care for Alzheimer’s disease and related dementias in the United States: 2016 to 2060. NPJ Aging 10(1):13. https://doi.org/10.1038/s41514-024-00136-6
Article PubMed PubMed Central Google Scholar
Kaur K, Narang RK, Singh S (2023) Role of Nrf2 in Oxidative Stress, Neuroinflammation and Autophagy in Alzheimer’s Disease: Regulation of Nrf2 by Different Signaling Pathways. Curr Mol Med. https://doi.org/10.2174/1566524023666230726145447
Choi SB, Kwon S, Kim JH, Ahn NH, Lee JH, Yang SH (2023) The Molecular Mechanisms of Neuroinflammation in Alzheimer's Disease, the Consequence of Neural Cell Death. Int J Mol Sci 24 (14). https://doi.org/10.3390/ijms241411757
Padhy DS, Palit P, Ikbal AMA, Das N, Roy DK, Banerjee S (2023) Selective inhibition of peptidyl-arginine deiminase (PAD): can it control multiple inflammatory disorders as a promising therapeutic strategy? Inflammopharmacology 31(2):731–744. https://doi.org/10.1007/s10787-023-01149-5
Article CAS PubMed Google Scholar
Wang LL, Song YP, Mi JH, Ding ML (2021) Peptidyl arginine deiminase 4 and its potential role in Alzheimer’s disease. Med Hypotheses 146:110466. https://doi.org/10.1016/j.mehy.2020.110466
Article CAS PubMed Google Scholar
Liang T, Zhang Y, Wu S, Chen Q, Wang L (2022) The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front Pharmacol 13:845185. https://doi.org/10.3389/fphar.2022.845185
Article CAS PubMed PubMed Central Google Scholar
Geng H, An Q, Zhang Y, Huang Y, Wang L, Wang Y (2023) Role of Peptidylarginine Deiminase 4 in Central Nervous System Diseases. Mol Neurobiol 60(11):6748–6756. https://doi.org/10.1007/s12035-023-03489-3
Article CAS PubMed Google Scholar
Yusuf IO, Camille W, Thompson PR, Xu Z (2024) Protein Citrullination in Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases. J Exp Neurol 5(4):183–191. https://doi.org/10.33696/neurol.5.101
Article PubMed PubMed Central Google Scholar
Shi H, Mirzaei N, Koronyo Y, Davis MR, Robinson E, Braun GM, Jallow O, Rentsendorj A et al (2024) Identification of retinal oligomeric, citrullinated, and other tau isoforms in early and advanced AD and relations to disease status. Acta Neuropathol 148(1):3. https://doi.org/10.1007/s00401-024-02760-8
Article PubMed PubMed Central Google Scholar
Panwar S, Uniyal P, Kukreti N, Hashmi A, Verma S, Arya A, Joshi G (2024) Role of Autophagy and proteostasis in neurodegenerative diseases: Exploring the therapeutic interventions. Chem Biol Drug Des 103(4):e14515. https://doi.org/10.1111/cbdd.14515
Article CAS PubMed Google Scholar
Jia Q, Li J, Guo X, Li Y, Wu Y, Peng Y, Fang Z, Zhang X (2024) Neuroprotective effects of chaperone-mediated Autophagy in neurodegenerative diseases. Neural Regen Res 19(6):1291–1298. https://doi.org/10.4103/1673-5374.385848
Article CAS PubMed Google Scholar
Wang L, Klionsky DJ, Shen HM (2023) The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol 24(3):186–203. https://doi.org/10.1038/s41580-022-00529-z
Article CAS PubMed Google Scholar
Nixon RA (2024) Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Acta Neuropathol 148(1):42. https://doi.org/10.1007/s00401-024-02799-7
Nixon RA, Rubinsztein DC (2024) Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 25(11):926–946. https://doi.org/10.1038/s41580-024-00757-5
Article CAS PubMed Google Scholar
Xie ZS, Zhao JP, Wu LM, Chu S, Cui ZH, Sun YR, Wang H, Ma HF et al (2023) Hederagenin improves Alzheimer’s disease through PPARalpha/TFEB-mediated Autophagy. Phytomedicine 112:154711. https://doi.org/10.1016/j.phymed.2023.154711
Article CAS PubMed Google Scholar
Zhu J, Jiang X, Chang Y, Wu Y, Sun S, Wang C, Zheng S, Wang M et al (2023) Clemastine fumarate attenuates tauopathy and meliorates cognition in hTau mice via autophagy enhancement. Int Immunopharmacol 123:110649. https://doi.org/10.1016/j.intimp.2023.110649
Article CAS PubMed Google Scholar
Yang X, Zhou P, Zhao Z, Li J, Fan Z, Li X, Cui Z, Fu A (2023) Improvement Effect of Mitotherapy on the Cognitive Ability of Alzheimer's Disease through NAD(+)/SIRT1-Mediated Autophagy. Antioxidants (Basel) 12 (11). https://doi.org/10.3390/antiox12112006
Zhao X, Ma D, Yang B, Wang Y, Zhang L (2024) Research progress of T cell autophagy in autoimmune diseases. Front Immunol 15:1425443. https://doi.org/10.3389/fimmu.2024.1425443
Article CAS PubMed PubMed Central Google Scholar
Guo D, Liu Z, Zhou J, Ke C, Li D (2024) Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 25 (18). https://doi.org/10.3390/ijms25189947
Zhao J, Jiang P, Guo S, Schrodi SJ, He D (2021) Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. Front Immunol 12:809806. https://doi.org/10.3389/fimmu.2021.809806
Article CAS PubMed PubMed Central Google Scholar
Ali AH, Hachem M, Ahmmed MK (2024) Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications. Heliyon 10(9):e30946. https://doi.org/10.1016/j.heliyon.2024.e30946
Article CAS PubMed PubMed Central Google Scholar
Wang X, Song Y, Cong P, Wang Z, Liu Y, Xu J, Xue C (2024) Docosahexaenoic Acid-Acylated Astaxanthin Monoester Ameliorates Amyloid-beta Pathology and Neuronal Damage by Restoring Autophagy in Alzheimer’s Disease Models. Mol Nutr Food Res 68(2):e2300414. https://doi.org/10.1002/mnfr.202300414
Article CAS PubMed Google Scholar
Deshmukh GV, Niaz H, Bai R, Kim DH, Kim JW, Asghar J, Ramzan T, Maqbool M et al (2024) The Role of Omega-3 Fatty Acid Supplementation in Slowing Cognitive Decline Among Elderly Patients With Alzheimer’s Disease: A Systematic Review of Randomized Controlled Trials. Cureus 16(11):e73390. https://doi.org/10.7759/cureus.73390
Article PubMed PubMed Central Google Scholar
Welty FK (2023) Omega-3 fatty acids and cognitive function. Curr Opin Lipidol 34(1):12–21. https://doi.org/10.1097/MOL.0000000000000862
Article CAS PubMed Google Scholar
Swinkels D, Baes M (2023) The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol Ther 247:108440. https://doi.org/10.1016/j.pharmthera.2023.108440
Article CAS PubMed Google Scholar
Borgonovi SM, Iametti S, Di Nunzio M (2023) Docosahexaenoic Acid as Master Regulator of Cellular Antioxidant Defenses: A Systematic Review. Antioxidants (Basel) 12 (6). https://doi.org/10.3390/antiox12061283
Pellitteri R, La Cognata V, Russo C, Patti A, Sanfilippo C (2024) Protective Role of Eicosapentaenoic and Docosahexaenoic and Their N-Ethanolamide Derivatives in Olfactory Glial Cells Affected by Lipopolysaccharide-Induced Neuroinflammation. Molecules 29 (20). https://doi.org/10.3390/molecules29204821
Salsinha AS, Socodato R, Relvas JB, Pintado M (2023) The pro- and anti-inflammatory activity of fatty acids. In: Bioactive Lipids. pp 51–75. https://doi.org/10.1016/b978-0-12-824043-4.00002-6
Zhang J, Li H, Zhong H, Chen X, Hu ZX (2024) Omega-3 polyunsaturated fatty acids protect peritoneal mesothelial cells from hyperglycolysis and mesothelial-mesenchymal transition through the FFAR4/CaMKKbeta/AMPK/mTOR signaling pathway. Int Immunopharmacol 128:111561. https://doi.org/10.1016/j.intimp.2024.111561
Article CAS PubMed Google Scholar
Castellanos-Perilla N, Borda MG, Aarsland D, Barreto GE (2024) An analysis of omega-3 clinical trials and a call for personalized supplementation for dementia prevention. Expert Rev Neurother 24(3):313–324. https://doi.org/10.1080/14737175.2024.2313547
Comments (0)