Carnosic Acid Attenuated the Motor Impairment by Bisphenol A is Related to the Regulation of Autophagy Through Parkin in In Vitro and In Vivo

Costa HE, Cairrao E (2024) Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 98(1):1–73. https://doi.org/10.1007/s00204-023-03614-0

Article  CAS  PubMed  Google Scholar 

Hoekstra EJ, Simoneau C (2013) Release of bisphenol A from polycarbonate: a review. Crit Rev Food Sci Nutr 53(4):386–402. https://doi.org/10.1080/10408398.2010.536919

Article  CAS  PubMed  Google Scholar 

Nesan D, Sewell LC, Kurrasch DM (2018) Opening the black box of endocrine disruption of brain development: lessons from the characterization of Bisphenol A. Horm Behav 101:50–58. https://doi.org/10.1016/j.yhbeh.2017.12.001

Article  CAS  PubMed  Google Scholar 

Hyun SA, Ka M (2024) Bisphenol A (BPA) and neurological disorders: an overview. Int J Biochem Cell Biol 173. https://doi.org/10.1016/j.biocel.2024.106614

Article  CAS  PubMed  Google Scholar 

Cai S, Rao X, Ye J, Ling Y, Mi S, Chen H, Fan C, Li Y (2020) Relationship between urinary bisphenol a levels and cardiovascular diseases in the U.S. adult population, 2003–2014. Ecotox Environ Safe 192:110300. https://doi.org/10.1016/j.ecoenv.2020.110300

Frigerio I, Bouwman MMA, Noordermeer R, Podobnik E, Popovic M, Timmermans E, Rozemuller AJM, van de Berg WDJ, Jonkman LE (2024) Regional differences in synaptic degeneration are linked to alpha-synuclein burden and axonal damage in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol Commun 12(1):4. https://doi.org/10.1186/s40478-023-01711-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarlaki F, Shahsavari Z, Goshadrou F, Naseri F, Keimasi M, Sirati-Sabet M (2022) The effect of ghrelin on antioxidant status in the rat's model of Alzheimer’s disease induced by amyloid-beta. Biomedicine (Taipei) 12 (4):44–54. https://doi.org/10.37796/2211-8039.1341

Hsu S, Huang H, Liao C, Huang H, Shih Y, Chen J, Wu H, Kuo T, Fu R, Tsai C (2024) Induction of phosphorylated tau accumulation and memory impairment by bisphenol A and the protective effects of carnosic acid in in vitro and in vivo. Mol Neurobiol 61(9):6148–6160. https://doi.org/10.1007/s12035-024-03952-9

Article  CAS  PubMed  Google Scholar 

Meng L, Ouyang Z, Chen Y, Huang C, Yu Y, Fan R (2024) Low-dose BPA-induced neuronal energy metabolism dysfunction and apoptosis mediated by PINK1/parkin mitophagy pathway in juvenile rats. Sci Total Environ 929. https://doi.org/10.1016/j.scitotenv.2024.172655

Article  CAS  PubMed  Google Scholar 

Sirasanagandla SR, Sofin RGS, Al-Huseini I, Das S (2022) Role of bisphenol A in autophagy modulation: understanding the molecular concepts and therapeutic options. Mini-Rev Med Chem 22(17):2213–2223. https://doi.org/10.2174/1389557522666220214094055

Article  CAS  PubMed  Google Scholar 

Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, Ma C, Jiang L, Hu Y, Gong Q, Zhu D, Xu Y, Liu R, Liu L, Yi C, Zhu Y, Ma N, Okamoto K, Xie Z, Liu J, He RR, Feng D (2021) Selective autophagy of intracellular organelles: recent research advances. Theranostics 11(1):222–256. https://doi.org/10.7150/thno.49860

Article  CAS  PubMed  PubMed Central  Google Scholar 

Preciados M, Yoo C, Roy D (2016) Estrogenic endocrine disrupting chemicals influencing NRF1 regulated gene networks in the development of complex human brain diseases. Int J Mol Sci 17 (12). https://doi.org/10.3390/ijms17122086

Lonskaya I, Hebron ML, Algarzae NK, Desforges N, Moussa CE (2013) Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson’s disease. Neuroscience 232:90–105. https://doi.org/10.1016/j.neuroscience.2012.12.018

Article  CAS  PubMed  Google Scholar 

Wu M, Cong Y, Wang K, Yu H, Zhang X, Ma M, Duan Z, Pei X (2022) Bisphenol A impairs macrophages through inhibiting autophagy via AMPK/mTOR signaling pathway and inducing apoptosis. Ecotox Environ Safe 234. https://doi.org/10.1016/j.ecoenv.2022.113395

Article  CAS  Google Scholar 

Mirza FJ, Zahid S, Holsinger RMD (2023) Neuroprotective effects of carnosic acid: insight into its mechanisms of action. Molecules 28 (5). https://doi.org/10.3390/molecules28052306

Infantino V, Pappalardo I, Santarsiero A, Tripathi S, Singh G, de Oliveira MR (2024) Brain mitochondria as a therapeutic target for carnosic acid. J Integr Neurosci 23 (3):53. https://doi.org/10.31083/j.jin2303053

Liu WY, Li Y, Li Y, Xu LZ, Jia JP (2023) Carnosic acid attenuates AbetaOs-induced apoptosis and synaptic impairment via regulating NMDAR2B and its downstream cascades in SH-SY5Y cells. Mol Neurobiol 60(1):133–144. https://doi.org/10.1007/s12035-022-03032-w

Article  CAS  PubMed  Google Scholar 

Lai CY, Lin CY, Wu CR, Tsai CH, Tsai CW (2021) Carnosic acid alleviates levodopa-induced dyskinesia and cell death in 6-hydroxydopamine-lesioned rats and in SH-SY5Y cells. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.703894

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin CY, Tsai CW (2017) Carnosic acid attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells by inducing autophagy through an enhanced interaction of parkin and Beclin1. Mol Neurobiol 54(4):2813–2822. https://doi.org/10.1007/s12035-016-9873-7

Article  CAS  PubMed  Google Scholar 

Lin CY, Tsai CW (2019) PINK1/parkin-mediated mitophagy pathway is related to neuroprotection by carnosic acid in SH-SY5Y cells. Food Chem Toxicol 125:430–437. https://doi.org/10.1016/j.fct.2019.01.027

Article  CAS  PubMed  Google Scholar 

Liao CH, Hung HC, Lai CN, Liao YH, Liu PT, Lu SM, Huang HC, Tsai CW (2023) Carnosic acid and rosemary extract reversed the lipid accumulation induced by bisphenol A in the 3T3-L1 preadipocytes and C57BL/6J mice via SIRT1/FoxO1 pathway. Food Chem Toxicol 179. https://doi.org/10.1016/j.fct.2023.113996

Article  CAS  PubMed  Google Scholar 

Tsai CW, Lin CY, Lin HH, Chen JH (2011) Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem Res 36(12):2442–2451. https://doi.org/10.1007/s11064-011-0573-4

Article  CAS  PubMed  Google Scholar 

Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, Takahashi R, Kitazawa S, Hattori N (2010) A rotarod test for evaluation of motor skill learning. J Neurosci Methods 189(2):180–185. https://doi.org/10.1016/j.jneumeth.2010.03.026

Article  PubMed  Google Scholar 

Liu S, Fan M, Xu JX, Yang LJ, Qi CC, Xia QR, Ge JF (2022) Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J Neuroinflamm 19(1):35. https://doi.org/10.1186/s12974-022-02393-2

Article  CAS  Google Scholar 

Kraeuter AK, Guest PC, Sarnyai Z (2019) The elevated plus maze test for measuring anxiety-like behavior in rodents. Methods Mol Biol 1916:69–74. https://doi.org/10.1007/978-1-4939-8994-2_4

Article  CAS  PubMed  Google Scholar 

Sahoo PK, Aparna S, Naik PK, Singh SB, Das SK (2021) Bisphenol A exposure induces neurobehavioral deficits and neurodegeneration through induction of oxidative stress and activated caspase-3 expression in zebrafish brain. J Biochem Mol Toxicol 35(10). https://doi.org/10.1002/jbt.22873

Article  CAS  PubMed  Google Scholar 

Park SJ, Jang JW, Moon EY (2023) Bisphenol A-induced autophagy ameliorates human B cell death through Nrf2-mediated regulation of Atg7 and Beclin1 expression by Syk activation. Ecotox Environ Safe 260. https://doi.org/10.1016/j.ecoenv.2023.115061

Article  CAS  Google Scholar 

Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K (2021) Molecular mechanisms and physiological functions of mitophagy. Embo J 40 (3):e104705. https://doi.org/10.15252/embj.2020104705

Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT (2020) Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 98:29–60. https://doi.org/10.1016/j.reprotox.2020.05.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue J, Zhang L, Xie X, Gao Y, Jiang L, Wang J, Wang Y, Gao R, Yu J, Xiao H (2020) Prenatal bisphenol A exposure contributes to Tau pathology: potential roles of CDK5/GSK3beta/PP2A axis in BPA-induced neurotoxicity. Toxicology 438. https://doi.org/10.1016/j.tox.2020.152442

Article  CAS  PubMed  Google Scholar 

Zhang H, Kuang H, Luo Y, Liu S, Meng L, Pang Q, Fan R (2019) Low-dose bisphenol A exposure impairs learning and memory ability with alterations of neuromorphology and neurotransmitters in rats. Sci Total Environ 697. https://doi.org/10.1016/j.scitotenv.2019.134036

Article  CAS  PubMed 

Comments (0)

No login
gif