Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185. https://doi.org/10.1126/science.1566067
Article CAS PubMed Google Scholar
Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210
Article CAS PubMed PubMed Central Google Scholar
Hu J, Wang X (2021) Alzheimer’s disease: From pathogenesis to mesenchymal stem cell therapy - bridging the missing link. Front Cell Neurosci 15:811852. https://doi.org/10.3389/fncel.2021.811852
Article CAS PubMed Google Scholar
Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM (2021) Alzheimer’s disease. Lancet 397(10284):1577–1590. https://doi.org/10.1016/s0140-6736(20)32205-4
Article CAS PubMed PubMed Central Google Scholar
Alhazmi HA, Albratty M (2022) An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm J 30(12):1755–1764. https://doi.org/10.1016/j.jsps.2022.10.004
Article CAS PubMed PubMed Central Google Scholar
Wu W, Ji Y, Wang Z, Wu X, Li J, Gu F, Chen Z, Wang Z (2023) The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Eur J Med Res 28(1):544. https://doi.org/10.1186/s40001-023-01512-w
Article CAS PubMed PubMed Central Google Scholar
Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. https://doi.org/10.1016/j.cell.2007.12.018
Article CAS PubMed PubMed Central Google Scholar
Rubinsztein DC, Ravikumar B, Acevedo-Arozena A, Imarisio S, O’Kane CJ, Brown SD (2005) Dyneins, autophagy, aggregation and neurodegeneration. Autophagy 1(3):177–178. https://doi.org/10.4161/auto.1.3.2050
Article CAS PubMed Google Scholar
Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C et al (2022) The different autophagy degradation pathways and neurodegeneration. Neuron 110(6):935–966. https://doi.org/10.1016/j.neuron.2022.01.017
Article CAS PubMed PubMed Central Google Scholar
Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein DC (2020) Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol 432(8):2799–2821. https://doi.org/10.1016/j.jmb.2019.12.035
Article CAS PubMed Google Scholar
Yoo S, Park BI, Kim DH, Lee S, Lee SH, Shim WS, Seo YK, Kang K, Lee KT, Yim SV, Soung DY, Kim BH (2021) Ginsenoside absorption rate and extent enhancement of black ginseng (CJ EnerG) over red ginseng in healthy adults. Pharmaceutics 13 (4). https://doi.org/10.3390/pharmaceutics13040487
Goodwin PH, Best MA (2023) Ginsenosides and biotic stress responses of ginseng. Plants (Basel) 12 (5). https://doi.org/10.3390/plants12051091
Zhi D, Yang W, Yue J, Xu S, Ma W, Zhao C, Wang X, Wang D (2022) HSF-1 mediated combined ginsenosides ameliorating Alzheimer’s disease like symptoms in Caernorhabditis elegans. Nutr Neurosci 25(10):2136–2148. https://doi.org/10.1080/1028415x.2021.1949791
Article CAS PubMed Google Scholar
Zheng M, Xin Y, Li Y, Xu F, Xi X, Guo H, Cui X, Cao H et al (2018) Ginsenosides: A potential neuroprotective agent. Biomed Res Int 2018:8174345. https://doi.org/10.1155/2018/8174345
Article CAS PubMed PubMed Central Google Scholar
Ke C, Peng Y, Yuan Z, Cai J (2021) Ginsenoside Rb1 protected PC12 cells from Aβ(25–35)-induced cytotoxicity via PPARγ activation and cholesterol reduction. Eur J Pharmacol 893:173835. https://doi.org/10.1016/j.ejphar.2020.173835
Yan X, Hu G, Yan W, Chen T, Yang F, Zhang X, Zhao G, Liu J (2017) Ginsenoside Rd promotes non-amyloidogenic pathway of amyloid precursor protein processing by regulating phosphorylation of estrogen receptor alpha. Life Sci 168:16–23. https://doi.org/10.1016/j.lfs.2016.11.002
Article CAS PubMed Google Scholar
Cao G, Su P, Zhang S, Guo L, Zhang H, Liang Y, Qin C, Zhang W (2016) Ginsenoside Re reduces Aβ production by activating PPARγ to inhibit BACE1 in N2a/APP695 cells. Eur J Pharmacol 793:101–108. https://doi.org/10.1016/j.ejphar.2016.11.006
Article CAS PubMed Google Scholar
Quan Q, Li X, Feng J, Hou J, Li M, Zhang B (2020) Ginsenoside Rg1 reduces &beta-amyloid levels by inhibiting CD &Kappa 5-induced PPAR&gamma phosphorylation in a neuron model of Alzheimer’s disease. Mol Med Rep 22(4):3277–3288. https://doi.org/10.3892/mmr.2020.11424
Article CAS PubMed PubMed Central Google Scholar
Lu M, Tan L, Zhou XG, Yang ZL, Zhu Q, Chen JN, Luo HR, Wu GS (2020) Secoisolariciresinol diglucoside delays the progression of aging-related diseases and extends the lifespan of Caenorhabditis elegans via DAF-16 and HSF-1. Oxid Med Cell Longev 2020:1293935. https://doi.org/10.1155/2020/1293935
Article CAS PubMed PubMed Central Google Scholar
Stiernagle T (2006) Maintenance of C. elegans. WormBook:1–11. https://doi.org/10.1895/wormbook.1.101.1
Kim SH, Kim BK, Park S, Park SK (2019) Phosphatidylcholine extends lifespan via DAF-16 and reduces amyloid-beta-induced toxicity in Caenorhabditis elegans. Oxid Med Cell Longev 2019:2860642. https://doi.org/10.1155/2019/2860642
Article CAS PubMed PubMed Central Google Scholar
Wang N, Wang E, Wang R, Muhammad F, Li T, Yue J, Zhou Y, Zhi D et al (2022) Ursolic acid ameliorates amyloid β-induced pathological symptoms in Caenorhabditis elegans by activating the proteasome. Neurotoxicology 88:231–240. https://doi.org/10.1016/j.neuro.2021.12.004
Article CAS PubMed Google Scholar
Wang Y, Cheng Q, Su Q, Yu X, Shen T, Yang X, Jia W (2022) Aesculin offers increased resistance against oxidative stress and protective effects against Aβ-induced neurotoxicity in Caenorhabditis elegans. Eur J Pharmacol 917:174755. https://doi.org/10.1016/j.ejphar.2022.174755
Article CAS PubMed Google Scholar
Franco-Juárez B, Mejía-Martínez F, Moreno-Arriola E, Hernández-Vázquez A, Gómez-Manzo S, Marcial-Quino J, Arreguín-Espinosa R, Velázquez-Arellano A, Ortega-Cuellar D (2018) A high glucose diet induces autophagy in a HLH-30/TFEB-dependent manner and impairs the normal lifespan of C. elegans. Aging (Albany NY) 10 (10):2657–2667. https://doi.org/10.18632/aging.101577
O’Rourke EJ, Soukas AA, Carr CE, Ruvkun G (2009) C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10 (5):430–435. https://doi.org/10.1016/j.cmet.2009.10.002
Liu P, Lapcinski IP, Hlynialuk CJW, Steuer EL, Loude TJ, Jr., Shapiro SL, Kemper LJ, Ashe KH (2024) Aβ∗56 is a stable oligomer that impairs memory function in mice. iScience 27 (3):109239. https://doi.org/10.1016/j.isci.2024.109239
Chung KM, Hernández N, Sproul AA, Yu WH (2019) Alzheimer’s disease and the autophagic-lysosomal system. Neurosci Lett 697:49–58. https://doi.org/10.1016/j.neulet.2018.05.017
Article CAS PubMed Google Scholar
Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M (2013) Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog Neurobiol 106–107:33–54. https://doi.org/10.1016/j.pneurobio.2013.06.002
Article CAS PubMed Google Scholar
Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199. https://doi.org/10.1172/jci33585
Article CAS PubMed PubMed Central Google Scholar
Xie D, Deng T, Zhai Z, Sun T, Xu Y (2022) The cellular model for Alzheimer’s disease research: PC12 cells. Front Mol Neurosci 15:1016559. https://doi.org/10.3389/fnmol.2022.1016559
Article CAS PubMed Google Scholar
Ułamek-Kozioł M, Furmaga-Jabłońska W, Januszewski S, Brzozowska J, Sciślewska M, Jabłoński M, Pluta R (2013) Neuronal autophagy: self-eating or self-cannibalism in Alzheimer’s disease. Neurochem Res 38(9):1769–1773.
Comments (0)