Evaluation of the Protective Effects of Noscapine on Paraquat-Induced Parkinson's Disease in Rats

Ahmad MH, Fatima M, Ali M, Rizvi MA, Mondal AC (2021) Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson’s disease. Neuropharmacology 201:108831

Article  CAS  PubMed  Google Scholar 

Altinoz MA, Guloksuz S, Ozpinar A (2022) Immunomodifying and neuroprotective effects of Noscapine: Implications for multiple sclerosis, neurodegenerative, and psychiatric disorders. Chem Biol Interact 352:109794

Article  CAS  PubMed  Google Scholar 

Awadalla EA (2012) Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity. Exp Toxicol Pathol 64:431–434

Article  CAS  PubMed  Google Scholar 

Bastías-Candia S, Zolezzi JM, Inestrosa NC (2019) Revisiting the paraquat-induced sporadic Parkinson’s disease-like model. Mol Neurobiol 56:1044–1055

Article  PubMed  Google Scholar 

Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ 17:1115–1125

Article  CAS  PubMed  Google Scholar 

Blanco-Ayala T, Andérica-Romero A, Pedraza-Chaverri J (2014) New insights into anti-oxidant strategies against paraquat toxicity. Free Radical Res 48:623–640

Article  CAS  Google Scholar 

Błaszczyński M, Litwińska J, Zaborowska D, Biliński T (1985) The role of respiratory chain in paraquat toxicity in yeast. Acta Microbiol Pol 34:243–254

PubMed  Google Scholar 

Chen Q, Niu Y, Zhang R, Guo H, Gao Y, Li Y, Liu R (2010) The toxic influence of paraquat on hippocampus of mice: involvement of oxidative stress. Neurotoxicology 31:310–316

Article  CAS  PubMed  Google Scholar 

Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67:715–725

Article  PubMed  PubMed Central  Google Scholar 

Chinta SJ, Andersen JK (2006) Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson’s disease. Free Radical Biol Med 41:1442–1448

Article  CAS  Google Scholar 

Clark D, McElligott T, Hurst EW (1966) The toxicity of paraquat. Occup Environ Med 23:126–132

Article  CAS  Google Scholar 

Collins LM, Toulouse A, Connor TJ, Nolan YM (2012) Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 62:2154–2168

Article  CAS  PubMed  Google Scholar 

Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 169:919–926

Article  PubMed  PubMed Central  Google Scholar 

Dahlström B, Mellstrand T, Löfdahl C-G, Johansson M (1982) Pharmakokinetic properties of Noscapine. Eur J Clin Pharmacol 22:535–539

Article  PubMed  Google Scholar 

Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

Article  CAS  PubMed  Google Scholar 

Deacon RM (2013) Measuring motor coordination in mice. JoVE (J Visual Exp) e2609

DeBono A, Capuano B, Scammells PJ (2015) Progress toward the development of Noscapine and derivatives as anticancer agents. J Med Chem 58:5699–5727

Article  CAS  PubMed  Google Scholar 

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

Article  CAS  PubMed  Google Scholar 

Fernández J, Pérez-Álvarez JA, Fernández-López JA (1997) Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem 59:345–353

Article  Google Scholar 

Gazewood JD, Richards DR, Clebak K (2013) Parkinson disease: an update. Am Fam Physician 87:267–273

PubMed  Google Scholar 

Ghasemi Z, Kiasalari Z, Ebrahimi F, Ansari F, Sharayeli M, Roghani M (2017) Neuroprotective effect of diosgenin in 6-hydroxydopamine-induced model of Parkinsonâ s disease in the rat. Daneshvar Med 25:87–98

Google Scholar 

Hassanzadeh H, Rahimmi A, Amini S, Hassanzadeh K (2015) Effect of N-acetylcysteine on motor symptoms and parkin protein level in frontal cortex in rat model of Parkinson’s disease. Sci J Kurdistan Univ Med Sci 20:40–47

Google Scholar 

Helley MP, Pinnell J, Sportelli C, Tieu K (2017) Mitochondria: a common target for genetic mutations and environmental toxicants in Parkinson’s disease. Front Genet 8:177

Article  PubMed  PubMed Central  Google Scholar 

Hirai K-I, Witschi H, Côté MG (1985) Mitochondrial injury of pulmonary alveolar epithelial cells in acute paraquat intoxication. Exp Mol Pathol 43:242–252

Article  CAS  PubMed  Google Scholar 

Hooman Khademi M, Farin Kamangar M, Paul Brennan M, Reza Malekzadeh M (2016) Opioid therapy and its side effects: a review. Arch Iran Med 19:870

PubMed  Google Scholar 

Mokhtari-Zaer A, Norouzi F, Askari VR, Khazdair MR, Roshan NM, Boskabady M, Hosseini M, Boskabady MH (2020) The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. J Ethnopharmacol 253:112653

Article  CAS  Google Scholar 

Hsu M, Srinivas B, Kumar J, Subramanian R, Andersen J (2005) Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson’s disease. J Neurochem 92:1091–1103

Article  CAS  PubMed  Google Scholar 

Ishola AO, Laoye BJ, Oyeleke DE, Bankole OO, Sirjao MU, Cobham AE, Balogun WG, Balogun AA et al (2015) Vitamin D3 receptor activation rescued corticostriatal neural activity and improved motor-cognitive function in− D2R Parkinsonian mice model. J Biomed Sci Eng 1–15

Ishola IO, Akataobi OE, Alade AA, Adeyemi OO (2019) Glimepiride prevents paraquat-induced Parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Fundam Clin Pharmacol 33:277–285

Article  CAS  PubMed  Google Scholar 

Ishola IO, Akinyede A, Adeluwa T, Micah C (2018) Novel action of vinpocetine in the prevention of paraquat-induced parkinsonism in mice: involvement of oxidative stress and neuroinflammation. Metab Brain Dis 33:1493–1500

Article  CAS  PubMed  Google Scholar 

Jayaraj RL, Beiram R, Azimullah S, MF NM, Ojha SK, Adem A, Jalal FY (2021) Noscapine prevents rotenone-induced neurotoxicity: involvement of oxidative stress, neuroinflammation and autophagy pathways. Molecules 26: 4627

Ježek J, Cooper KF, Strich R (2018) Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Anti-oxidants 7:13

Google Scholar 

Kang MJ, Gil SJ, Lee JE, Koh HC (2010) Selective vulnerability of the striatal subregions of C57BL/6 mice to paraquat. Toxicol Lett 195:127–134

Article  CAS  PubMed  Google Scholar 

Kaur K, Sodhi RK, Katyal A, Aneja R, Jain UK, Katare OP, Madan J (2015) Wheat germ agglutinin anchored chitosan microspheres of reduced brominated derivative of Noscapine ameliorated acute inflammation in experimental colitis. Colloids Surf, B 132:225–235

Article  CAS  Google Scholar 

Kaur R, Mehan S, Singh S (2019) Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci 40:13–23

Article  PubMed  Google Scholar 

Landen JW, Hau V, Wang M, Davis T, Ciliax B, Wainer BH, Van Meir EG, Glass JD et al (2004) Noscapine crosses the blood-brain barrier and inhibits glioblastoma growth. Clin Cancer Res 10:5187–5201

Article  CAS  PubMed  Google Scholar 

Madesh M, Balasubramanian K (1998) Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys 35:184–188

CAS  PubMed  Google Scholar 

Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ (2010) Free tubulin modulates mitochondrial membrane potential in cancer cells. Can Res 70:10192–10201

Article  CAS 

Comments (0)

No login
gif