Khan G, Hashim MJ (2025) Epidemiology of multiple sclerosis: global, regional, national and sub-national-level estimates and future projections. J Epidemiol Glob Health 15(1):21. https://doi.org/10.1007/s44197-025-00353-6
Article PubMed PubMed Central Google Scholar
Magyari M, Koch-Henriksen N (2022) Significant gender differences in clinical disease activity and severity of multiple sclerosis: a Danish nationwide cohort study (S40.005). Neurology 98(18_supplement):1939. https://doi.org/10.1212/WNL.98.18_supplement.1939
Marcus R (2022) What is multiple sclerosis? JAMA 328(20):2078. https://doi.org/10.1001/jama.2022.14236
Vecchio M, Chiaramonte R, DI Benedetto P (2022) Management of bladder dysfunction in multiple sclerosis: a systematic review and meta-analysis of studies regarding bladder rehabilitation. Eur J Phys Rehabil Med 58(3):387–396. https://doi.org/10.23736/s1973-9087.22.07217-3
Article PubMed PubMed Central Google Scholar
Erden E, Ersoz M, Tiftik T, Erden E (2022) The neurogenic bladder characteristics and treatment approaches in the patients with multiple sclerosis. Mult Scler Relat Disord 58:103439. https://doi.org/10.1016/j.msard.2021.103439
Rahnama’i MS (2020) Neuromodulation for functional bladder disorders in patients with multiple sclerosis. Mult Scler 26(11):1274–1280. https://doi.org/10.1177/1352458519894714
Benedict RHB, Amato MP, DeLuca J, Geurts JJG (2020) Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol 19(10):860–871. https://doi.org/10.1016/s1474-4422(20)30277-5
Article PubMed PubMed Central Google Scholar
Thomas S, Bradley J, Cole G et al (2022) A consensus bladder and bowel management pathway for multiple sclerosis: process and application. British Journal of Neuroscience Nursing 18(Sup3):S6–S13. https://doi.org/10.12968/bjnn.2022.18.Sup3.S6
Kuhlmann T, Moccia M, Coetzee T et al (2023) Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol 22(1):78–88. https://doi.org/10.1016/s1474-4422(22)00289-7
Fragalà E, Russo GI, Di Rosa A et al (2015) Association between the neurogenic bladder symptom score and urodynamic examination in multiple sclerosis patients with lower urinary tract dysfunction. Int Neurourol J 19(4):272–277. https://doi.org/10.5213/inj.2015.19.4.272
Article PubMed PubMed Central Google Scholar
Burgess S, Davey Smith G, Davies NM et al (2019) Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 4:186. https://doi.org/10.12688/wellcomeopenres.15555.3
Sanderson E, Glymour MM, Holmes MV et al (2022) Mendelian randomization. Nat Rev Methods Primers 2. https://doi.org/10.1038/s43586-021-00092-5
Dobrijevic E, van Zwieten A, Kiryluk K et al (2023) Mendelian randomization for nephrologists. Kidney Int 104(6):1113–1123. https://doi.org/10.1016/j.kint.2023.09.016
Skrivankova VW, Richmond RC, Woolf BAR et al (2021) Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement. JAMA 326(16):1614–1621. https://doi.org/10.1001/jama.2021.18236
Kurki MI, Karjalainen J, Palta P et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613(7944):508–518. https://doi.org/10.1038/s41586-022-05473-8
Article CAS PubMed PubMed Central Google Scholar
Sawcer S, Hellenthal G, Pirinen M et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219. https://doi.org/10.1038/nature10251
Article CAS PubMed PubMed Central Google Scholar
Sakaue S, Kanai M, Tanigawa Y et al (2021) A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet 53(10):1415–1424. https://doi.org/10.1038/s41588-021-00931-x
Article CAS PubMed Google Scholar
Sun BB, Chiou J, Traylor M et al (2023) Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622(7982):329–338. https://doi.org/10.1038/s41586-023-06592-6
Article CAS PubMed PubMed Central Google Scholar
Ferkingstad E, Sulem P, Atlason BA et al (2021) Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 53(12):1712–1721. https://doi.org/10.1038/s41588-021-00978-w
Article CAS PubMed Google Scholar
Westra HJ, Peters MJ, Esko T et al (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45(10):1238–1243. https://doi.org/10.1038/ng.2756
Article CAS PubMed PubMed Central Google Scholar
Abecasis GR, Auton A, Brooks LD et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. https://doi.org/10.1038/nature11632
Article CAS PubMed Google Scholar
Bulik-Sullivan B, Finucane HK, Anttila V et al (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47(11):1236–1241. https://doi.org/10.1038/ng.3406
Article CAS PubMed PubMed Central Google Scholar
Zheng J, Erzurumluoglu AM, Elsworth BL et al (2017) LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33(2):272–279. https://doi.org/10.1093/bioinformatics/btw613
Article CAS PubMed Google Scholar
Li L, Fu L, Zhang L, Feng Y (2022) Mendelian randomization study of the genetic interaction between psoriasis and celiac disease. Sci Rep 12(1):21508. https://doi.org/10.1038/s41598-022-25217-y
Article CAS PubMed PubMed Central Google Scholar
Levin MG, Judy R, Gill D et al (2020) Genetics of height and risk of atrial fibrillation: a Mendelian randomization study. PLoS Med 17(10):e1003288. https://doi.org/10.1371/journal.pmed.1003288
Article CAS PubMed PubMed Central Google Scholar
Huang W, Xiao J, Ji J, Chen L (2021) Association of lipid-lowering drugs with COVID-19 outcomes from a Mendelian randomization study. Elife 10:10. https://doi.org/10.7554/eLife.73873
Hemani G, Tilling K, Davey Smith G (2017) Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 13(11):e1007081. https://doi.org/10.1371/journal.pgen.1007081
Article CAS PubMed PubMed Central Google Scholar
Burgess S, Scott RA, Timpson NJ et al (2015) Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 30(7):543–552. https://doi.org/10.1007/s10654-015-0011-z
Article PubMed PubMed Central Google Scholar
Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698. https://doi.org/10.1038/s41588-018-0099-7
Article CAS PubMed PubMed Central Google Scholar
Zhao J, Ming J, H
Comments (0)