Two isoniazid-based chemosensors for the detection of cyanide ions in solution: an experimental and computational study

Kaur, N., Kaur, G., Fegade, U. A., Singh, A., Sahoo, S. K., Kuwar, A. S., & Singh, N. (2017). Anion sensing with chemosensors having multiple NH recognition units. TrAC Trends in Analytical Chemistry, 95, 86–109. https://doi.org/10.1016/j.trac.2017.08.003

Article  CAS  Google Scholar 

Liu, Y., Hu, Y., Lee, S., Lee, D., & Yoon, J. (2016). Fluorescent and colorimetric chemosensors for anions, metal ions, reactive oxygen species, biothiols, and gases. Bulletin of the Korean Chemical Society, 37, 1661–1678. https://doi.org/10.1002/bkcs.10926

Article  CAS  Google Scholar 

Smith, L., Kruszyna, H., & Smith, R. P. (1977). The effect of methemoglogin on the inhibition of cytochrome c oxidase by cyanide, sulfide or azide. Biochemical Pharmacology, 26, 2247–2250. https://doi.org/10.1016/0006-2952(77)90287-8

Article  CAS  PubMed  Google Scholar 

Albert Msumange, D., Yener Yazici, E., Celep, O., Deveci, H., Kritskii, A., & Karimov, K. (2023). Recovery of Au and Ag from the roasted calcine of a copper-rich pyritic refractory gold ore using ion exchange resins. Minerals Engineering, 195, 108017. https://doi.org/10.1016/j.mineng.2023.108017

Article  CAS  Google Scholar 

Karimova, L. M., Terentyeva, I. V., Oleinikova, T. O., & Magaz, A. A. (2023). Research on hydrometallurgical processing of dump silver-containing tailings. ChemChemTech, 66, 101–110. https://doi.org/10.6060/ivkkt.20236612.6858

Article  CAS  Google Scholar 

Isom, G. E., & Way, J. L. (1984). Effects of oxygen on the antagonism of cyanide intoxication: Cytochrome oxidase, in vitro. Toxicology and Applied Pharmacology, 74, 57–62. https://doi.org/10.1016/0041-008X(84)90269-2

Article  CAS  PubMed  Google Scholar 

Nicholls, P., Van Buuren, K. J. H., & Van Gelder, B. F. (1972). Biochemical and biophysical studies on cytochrome aa3. Biochimica et Biophysica Acta (BBA) Bioenergetics, 275, 279–287. https://doi.org/10.1016/0005-2728(72)90208-3

Article  CAS  PubMed  Google Scholar 

Ma, Y., Li, Y., Ma, K., & Wang, Z. (2018). Optical colorimetric sensor arrays for chemical and biological analysis. Science China: Chemistry, 61, 643–655. https://doi.org/10.1007/s11426-017-9224-3

Article  CAS  Google Scholar 

Immanuel David, C., & Lee, H. (2024). Cutting-edge advances in colorimetric and fluorescent chemosensors for detecting lethal cyanide ion: A comprehensive review. Microchemical Journal, 200, 110359. https://doi.org/10.1016/j.microc.2024.110359

Article  CAS  Google Scholar 

Liu, B., Zhuang, J., & Wei, G. (2020). Recent advances in the design of colorimetric sensors for environmental monitoring. Environmental Science: Nano, 7, 2195–2213. https://doi.org/10.1039/D0EN00449A

Article  CAS  Google Scholar 

Yang, F.-Q., & Ge, L. (2023). Colorimetric sensors: Methods and applications. Sensors, 23, 9887. https://doi.org/10.3390/s23249887

Article  PubMed  PubMed Central  Google Scholar 

A.L. Berhanu, Gaurav, I. Mohiuddin, A.K. Malik, J.S. Aulakh, V. Kumar, K.-H. Kim. (2019). A review of the applications of Schiff bases as optical chemical sensors. TrAC Trends Anal. Chem. 116, 74–91. https://doi.org/10.1016/j.trac.2019.04.025

Anbu Durai, W., & Ramu, A. (2020). Hydrazone based dual—responsive colorimetric and ratiometric chemosensor for the detection of Cu2+/F− ions: DNA tracking, practical performance in environmental samples and tooth paste. Journal of Fluorescence, 30, 275–289. https://doi.org/10.1007/s10895-020-02488-0

Article  CAS  PubMed  Google Scholar 

Isaad, J., Malek, F., & Achari, A. E. (2022). Colorimetric and fluorescent probe based on coumarin/ thiophene derivative for sequential detection of mercury(II) and cyanide ions in an aqueous medium. Journal of Molecular Structure, 1270, 133838. https://doi.org/10.1016/j.molstruc.2022.133838

Article  CAS  Google Scholar 

Bouali, W., Yaman, M., Seferoğlu, N., & Seferoğlu, Z. (2024). Colorimetric and fluorimetric detection of CN– ion using a highly selective and sensitive chemosensor derived from coumarin-hydrazone. Journal of Photochemistry and Photobiology A: Chemistry, 448, 115227. https://doi.org/10.1016/j.jphotochem.2023.115227

Article  CAS  Google Scholar 

Ghafoor, H., Hussain, A., Hussain, S., Shafiq, Z., Mahmood, K., Ahmed, N., Yar, M., Ayub, K., Hao, X., Changjin, Z., & Ali, A. (2024). Quinoxaline based Schiff bases: An effective calorimetric chemosensor for cyanide ion detection, application in logic gate and DFT studies. Journal of Molecular Structure, 1308, 138082. https://doi.org/10.1016/j.molstruc.2024.138082

Article  CAS  Google Scholar 

Sunitha, M. S., & Sarveswari, S. (2024). A simple and coast effective quinoline based Schiff’s base SS-2 as a colorimetric chemosensor for highly selective detection of cyanide ion in food samples. Inorganic Chemistry Communications, 160, 111973. https://doi.org/10.1016/j.inoche.2023.111973

Article  CAS  Google Scholar 

Saleem, T., Khan, S., Yaqub, M., Khalid, M., Islam, M., ur Rehman, M. Y., Rashid, M., Shafiq, I., Braga, A. A. C., Syed, A., Bahkali, A. H., Trant, J. F., & Shafiq, Z. (2022). Novel quinoline-derived chemosensors: synthesis, anion recognition, spectroscopic, and computational study. New Journal of Chemistry, 46, 18233–18243. https://doi.org/10.1039/D2NJ02666J

Article  CAS  Google Scholar 

Nguyen, T. P. L., Nguyen, C. H. T., Nguyen, T.-Q., Tran, C. D., Nguyen, T. H., Nguyen, L.-T.T., & Nguyen, H. T. (2023). A novel colorimetric and fluorometric dual-channel chemosensor based on a conjugated perylene-benzothiazole system for highly selective detection of cyanide in aqueous media. ChemPlusChem, 88, e202300264. https://doi.org/10.1002/cplu.202300264

Article  CAS  PubMed  Google Scholar 

Zavalishin, M. N., Kiselev, A. N., Pechnikova, N. L., Shagalov, E. V., Nikitin, G. A., & Gamov, G. A. (2023). Benzotiazole-based colorimetric chemosensor for the effective detection of hazardous cyanide ions. ChemistrySelect, 8, e202301302. https://doi.org/10.1002/slct.202301302

Article  CAS  Google Scholar 

Jothi, D., Munusamy, S., Enbanathan, S., Manoj Kumar, S., & Iyer, S. K. (2022). Dibenzothiazole appended 4-hydroxyphenyl acrylonitrile as a highly selective visual and fluorimetric detection of cyanide ion. Optical Materials, 133, 112888. https://doi.org/10.1016/j.optmat.2022.112888

Article  CAS  Google Scholar 

Judge, V., Narasimhan, B., & Ahuja, M. (2012). Isoniazid: The magic molecule. Medicinal Chemistry Research, 21, 3940–3957. https://doi.org/10.1007/s00044-011-9948-y

Article  CAS  Google Scholar 

Tayade, K., Sahoo, S. K., Bondhopadhyay, B., Bhardwaj, V. K., Singh, N., Basu, A., Bendre, R., & Kuwar, A. (2014). Highly selective turn-on fluorescent sensor for nanomolar detection of biologically important Zn2+ based on isonicotinohydrazide derivative: Application in cellular imaging. Biosensors and Bioelectronics, 61, 429–433. https://doi.org/10.1016/j.bios.2014.05.053

Article  CAS  PubMed  Google Scholar 

J. Singh, S. Saini, R.K. Chauhan, P. Bhardwaj, A. Kumar, Virender. (2023). An isoniazid based Schiff base sensor for selective detection of Pd2+ ions. Journal of Fluorescence. https://doi.org/10.1007/s10895-023-03491-x.

Wang, D.-F., Ke, Y.-C., Guo, H.-X., Chen, J., & Weng, W. (2014). A novel highly selective colorimetric sensor for aluminum(III) ion using Schiff base derivative. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 268–272. https://doi.org/10.1016/j.saa.2013.11.063

Article  CAS  PubMed  Google Scholar 

Fernandes, R. S., & Dey, N. (2022). Acyl hydrazone-based reversible optical switch for reporting of cyanide ion in industrial wastewater samples. Journal of Molecular Structure, 1262, 132968. https://doi.org/10.1016/j.molstruc.2022.132968

Article  CAS  Google Scholar 

Gamov, G. A., Kiselev, A. N., Murekhina, A. E., Zavalishin, M. N., Aleksandriiskii, V. V., & Kosterin, DYu. (2021). Synthesis, protolytic equilibria, and antimicrobial action of nifuroxazide analogs. Journal of Molecular Liquids, 341, 116911. https://doi.org/10.1016/j.molliq.2021.116911

Article  CAS  Google Scholar 

Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox. (2016). Gaussian, Inc., Wallingford CT.

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. https://doi.org/10.1063/1.464913

Article  CAS  Google Scholar 

Dunning, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90, 1007–1023. https://doi.org/10.1063/1.456153

Article  CAS  Google Scholar 

Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A, 102, 1995–2001. https://doi.org/10.1021/jp9716997

Article  CAS  Google Scholar 

Chemcraft—graphical program for visualization of quantum chemistry computations. https://www.chemcraftprog.com/index.html. Accessed 17 Feb 2023.

Bader, R. F. W. (1994). Atoms in molecules: A quantum theory. Oxford: Clarendon Press, Oxford University Press.

Comments (0)

No login
gif