Adam J, Öhmichen M, Öhmichen E, Rother J, Müller UM, Hauser T, Schulz H (2015) Reliability of the calculated maximal lactate steady state in amateur cyclists. Biol Sport 32:97–102. https://doi.org/10.5604/20831862.1134311
Article CAS PubMed PubMed Central Google Scholar
Anderson ME, Hopkins WG, Roberts AD, Pyne DB (2006) Monitoring seasonal and long-term changes in test performance in elite swimmers. Eur J Sport Sci 6:145–154
Argentin S, Hausswirth C, Bernard T, Bieuzen F, Leveque JM, Couturier A, Lepers R (2006) Relation between preferred and optimal cadences during two hours of cycling in triathletes. Br J Sports Med. 40:293
Article CAS PubMed PubMed Central Google Scholar
Banister EW, Jackson RC (1967) The effect of speed and load changes on oxygen intake for equivalent power outputs during bicycle ergometry. Int Z Angew Physiol 24:284–290. https://doi.org/10.1007/BF00698204
Article CAS PubMed Google Scholar
Beneke R, Jumah MD, Leithäuser RM (2007) Modelling the lactate response to short-term all out exercise. Dyn Med 6:10. https://doi.org/10.1186/1476-5918-6-10
Article CAS PubMed PubMed Central Google Scholar
Böning D, Gönen Y, Maassen N (1984) Relationship between work load, pedal frequency, and physical fitness. Int J Sports Med 5:92–97. https://doi.org/10.1055/s-2008-1025887
Brickson S, Haraldsdottir K, Richards D, Bowron I, Watson A (2022) Pedalling cadence does not affect aerobic performance during an incremental maximal test among male and female adult cyclists. J Sci Cycling 11:47–55
Buchanan M, Weltman A (1985) Effects of pedal frequency on V̇O2 and work output at lactate threshold (LT), fixed blood lactate concentrations of 2 mM and 4 mM, and max in competitive cyclists. Int J Sports Med 6:163–168
Article CAS PubMed Google Scholar
Chavarren J, Calbet JA (1999) Cycling efficiency and pedalling frequency in road cyclists. Eur J Appl Physiol Occup Physiol 80:555–563
Article CAS PubMed Google Scholar
Coast JR, Welch HG (1985) Linear increase in optimal pedal rate with increased power output in cycle ergometry. Eur J Appl Physiol Occup Physiol 53:339–342. https://doi.org/10.1007/BF00422850
Article CAS PubMed Google Scholar
Driss T, Vandewalle H (2013) The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. BioMed Res Int 2013:589361
Article PubMed PubMed Central Google Scholar
Dunst AK, Hesse C, Feldmann A, Holmberg HC (2023a) A novel approach to determining the alactic time span in connection with assessment of the maximal rate of lactate accumulation in elite track cyclists. Int J Sports Physiol Perform 18:157–163
Dunst AK, Manunzio C, Feldmann A, Hesse C (2023) Applications of near-infrared spectroscopy in “anaerobic” diagnostics—SmO2 kinetics reflect PCr dephosphorylation and correlate with maximal lactate accumulation and maximal pedalling rate. Biol Sport. 40:1019
Article PubMed PubMed Central Google Scholar
Dunst AK, Hesse C, Ueberschär O (2024) Understanding optimal cadence dynamics: a systematic analysis of the power-velocity relationship in track cyclists with increasing exercise intensity. Front Physiol 15:1343601. https://doi.org/10.3389/fphys.2024.1343601
Article PubMed PubMed Central Google Scholar
Foss Ø, Hallén J (2004) The most economical cadence increases with increasing workload. Eur J Appl Physiol 92:443–451. https://doi.org/10.1007/s00421-004-1175-5
Francescato MP, Girardis M, di Prampero PE (1995) Oxygen cost of internal work during cycling. Eur J Appl Physiol Occup Physiol 72:51–57. https://doi.org/10.1007/BF00964114
Article CAS PubMed Google Scholar
Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol 38:1132–1139. https://doi.org/10.1152/jappl.1975.38.6.1132
Article CAS PubMed Google Scholar
Haase R, Dunst AK, Nitzsche N (2024) The influence of pedaling frequency on blood lactate accumulation in cycling sprints. Int J Sports Med 45(8):608–615. https://doi.org/10.1055/a-2255-5254
Article CAS PubMed Google Scholar
Hagberg JM, Mullin JP, Giese MD, Spitznagel E (1981) Effect of pedalling rate on submaximal exercise responses of competitive cyclists. J Appl Physiol 51:447–451
Article CAS PubMed Google Scholar
Hauser T, Adam J, Schulz H (2014) Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model 11:25. https://doi.org/10.1186/1742-4682-11-25
Article CAS PubMed PubMed Central Google Scholar
Hauser T, Mäbert A, Schulz H (2011) Influence of exercise duration on the maximum lactate production rate. In: Schulz H, editor. Exercise, Sports and Health: Second Joint Research Conference [of the Universities of Gloucestershire and Chemnitz] in Chemnitz, Germany, 09. - 11. September 2009. Universitätsverlag Chemnitz. p. 149–154.
Heck H, Wackerhage H (2024) The origin of the maximal lactate steady state (MLSS). BMC Sports Sci Med Rehabil 16:36. https://doi.org/10.1186/s13102-024-00827-3
Article PubMed PubMed Central Google Scholar
Heck H, Schulz H, Bartmus U (2003) Diagnostics of anaerobic power and capacity. Eur J Sport Sci 3:1–23. https://doi.org/10.1080/17461390300073302
Hess P, Seusing J (1963) Der Einfluß der Tretfrequenz und des Pedaldruckes auf die Sauerstoffaufnahme bei Untersuchungen am Ergometer. Int Z Angew Physiol Einschl Arbeitsphysiol 19:468–475
Hintzy F, Belli A, Grappe F, Rouillon JD (1999) Optimal pedalling velocity characteristics during maximal and submaximal cycling in humans. Eur J Appl Physiol Occup Physiol 79(5):426–432. https://doi.org/10.1007/s004210050533
Article CAS PubMed Google Scholar
Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301
Article CAS PubMed Google Scholar
Hughes EF, Turner SC, Brooks GA (1982) Effects of glycogen depletionand pedaling speed on "anaerobic threshold". J Appl Physiol Respir Environ Exerc Physiol 52:1598–1607. https://doi.org/10.1152/jappl.1982.52.6.1598
Israel S, Breneke H, Donath R (1967) Die Abhängigkeit einiger funktioneller Meßgrößen von der Trittfrequenz (Umdrehungszahl) bei der Fußkurbelergometrie. Med Sport 3:65–68
Ji S, Sommer A, Bloch W, Wahl P (2021) Comparison and performance validation of calculated and established anaerobic lactate thresholds in running. Medicina (Kaunas) 57(10):1117. https://doi.org/10.3390/medicina57101117
Langley JO, Ng SC, Todd EE et al (2024) V̇Lamax: determining the optimal test duration for maximal lactate formation rate during all-out sprint cycle ergometry. Eur J Appl Physiol. https://doi.org/10.1007/s00421-024-05456-9
Leo P, Mateo-March M, Valenzuela PL, Muriel X, Gandía-Soriano A, Giorgi A, Zabala M, Barranco-Gil D, Mujika I, Pallarés JG, Lucia A (2022) Influence of torque and cadence on power output production in cyclists. Int J sports Physiol Perform 18(1):27–36
Mader A (2003) Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J Appl Physiol 88:317–338
Article CAS PubMed Google Scholar
Mader A, Heck H (1986) A theory of the metabolic origin of “anaerobic threshold.” Int J Sports Med 7:45–65
Comments (0)