Enhancing endurance performance predictions: the role of movement velocity in metabolic simulations demonstrated by cycling cadence

Adam J, Öhmichen M, Öhmichen E, Rother J, Müller UM, Hauser T, Schulz H (2015) Reliability of the calculated maximal lactate steady state in amateur cyclists. Biol Sport 32:97–102. https://doi.org/10.5604/20831862.1134311

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson ME, Hopkins WG, Roberts AD, Pyne DB (2006) Monitoring seasonal and long-term changes in test performance in elite swimmers. Eur J Sport Sci 6:145–154

Article  Google Scholar 

Argentin S, Hausswirth C, Bernard T, Bieuzen F, Leveque JM, Couturier A, Lepers R (2006) Relation between preferred and optimal cadences during two hours of cycling in triathletes. Br J Sports Med. 40:293

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banister EW, Jackson RC (1967) The effect of speed and load changes on oxygen intake for equivalent power outputs during bicycle ergometry. Int Z Angew Physiol 24:284–290. https://doi.org/10.1007/BF00698204

Article  CAS  PubMed  Google Scholar 

Beneke R, Jumah MD, Leithäuser RM (2007) Modelling the lactate response to short-term all out exercise. Dyn Med 6:10. https://doi.org/10.1186/1476-5918-6-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Böning D, Gönen Y, Maassen N (1984) Relationship between work load, pedal frequency, and physical fitness. Int J Sports Med 5:92–97. https://doi.org/10.1055/s-2008-1025887

Article  PubMed  Google Scholar 

Brickson S, Haraldsdottir K, Richards D, Bowron I, Watson A (2022) Pedalling cadence does not affect aerobic performance during an incremental maximal test among male and female adult cyclists. J Sci Cycling 11:47–55

Article  Google Scholar 

Buchanan M, Weltman A (1985) Effects of pedal frequency on V̇O2 and work output at lactate threshold (LT), fixed blood lactate concentrations of 2 mM and 4 mM, and max in competitive cyclists. Int J Sports Med 6:163–168

Article  CAS  PubMed  Google Scholar 

Chavarren J, Calbet JA (1999) Cycling efficiency and pedalling frequency in road cyclists. Eur J Appl Physiol Occup Physiol 80:555–563

Article  CAS  PubMed  Google Scholar 

Coast JR, Welch HG (1985) Linear increase in optimal pedal rate with increased power output in cycle ergometry. Eur J Appl Physiol Occup Physiol 53:339–342. https://doi.org/10.1007/BF00422850

Article  CAS  PubMed  Google Scholar 

Driss T, Vandewalle H (2013) The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. BioMed Res Int 2013:589361

Article  PubMed  PubMed Central  Google Scholar 

Dunst AK, Hesse C, Feldmann A, Holmberg HC (2023a) A novel approach to determining the alactic time span in connection with assessment of the maximal rate of lactate accumulation in elite track cyclists. Int J Sports Physiol Perform 18:157–163

Article  PubMed  Google Scholar 

Dunst AK, Manunzio C, Feldmann A, Hesse C (2023) Applications of near-infrared spectroscopy in “anaerobic” diagnostics—SmO2 kinetics reflect PCr dephosphorylation and correlate with maximal lactate accumulation and maximal pedalling rate. Biol Sport. 40:1019

Article  PubMed  PubMed Central  Google Scholar 

Dunst AK, Hesse C, Ueberschär O (2024) Understanding optimal cadence dynamics: a systematic analysis of the power-velocity relationship in track cyclists with increasing exercise intensity. Front Physiol 15:1343601. https://doi.org/10.3389/fphys.2024.1343601

Article  PubMed  PubMed Central  Google Scholar 

Foss Ø, Hallén J (2004) The most economical cadence increases with increasing workload. Eur J Appl Physiol 92:443–451. https://doi.org/10.1007/s00421-004-1175-5

Article  PubMed  Google Scholar 

Francescato MP, Girardis M, di Prampero PE (1995) Oxygen cost of internal work during cycling. Eur J Appl Physiol Occup Physiol 72:51–57. https://doi.org/10.1007/BF00964114

Article  CAS  PubMed  Google Scholar 

Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol 38:1132–1139. https://doi.org/10.1152/jappl.1975.38.6.1132

Article  CAS  PubMed  Google Scholar 

Haase R, Dunst AK, Nitzsche N (2024) The influence of pedaling frequency on blood lactate accumulation in cycling sprints. Int J Sports Med 45(8):608–615. https://doi.org/10.1055/a-2255-5254

Article  CAS  PubMed  Google Scholar 

Hagberg JM, Mullin JP, Giese MD, Spitznagel E (1981) Effect of pedalling rate on submaximal exercise responses of competitive cyclists. J Appl Physiol 51:447–451

Article  CAS  PubMed  Google Scholar 

Hauser T, Adam J, Schulz H (2014) Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model 11:25. https://doi.org/10.1186/1742-4682-11-25

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hauser T, Mäbert A, Schulz H (2011) Influence of exercise duration on the maximum lactate production rate. In: Schulz H, editor. Exercise, Sports and Health: Second Joint Research Conference [of the Universities of Gloucestershire and Chemnitz] in Chemnitz, Germany, 09. - 11. September 2009. Universitätsverlag Chemnitz. p. 149–154.

Heck H, Wackerhage H (2024) The origin of the maximal lactate steady state (MLSS). BMC Sports Sci Med Rehabil 16:36. https://doi.org/10.1186/s13102-024-00827-3

Article  PubMed  PubMed Central  Google Scholar 

Heck H, Schulz H, Bartmus U (2003) Diagnostics of anaerobic power and capacity. Eur J Sport Sci 3:1–23. https://doi.org/10.1080/17461390300073302

Article  Google Scholar 

Hess P, Seusing J (1963) Der Einfluß der Tretfrequenz und des Pedaldruckes auf die Sauerstoffaufnahme bei Untersuchungen am Ergometer. Int Z Angew Physiol Einschl Arbeitsphysiol 19:468–475

CAS  Google Scholar 

Hintzy F, Belli A, Grappe F, Rouillon JD (1999) Optimal pedalling velocity characteristics during maximal and submaximal cycling in humans. Eur J Appl Physiol Occup Physiol 79(5):426–432. https://doi.org/10.1007/s004210050533

Article  CAS  PubMed  Google Scholar 

Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1301

Article  CAS  PubMed  Google Scholar 

Hughes EF, Turner SC, Brooks GA (1982) Effects of glycogen depletionand pedaling speed on "anaerobic threshold". J Appl Physiol Respir Environ Exerc Physiol 52:1598–1607. https://doi.org/10.1152/jappl.1982.52.6.1598

CAS  Google Scholar 

Israel S, Breneke H, Donath R (1967) Die Abhängigkeit einiger funktioneller Meßgrößen von der Trittfrequenz (Umdrehungszahl) bei der Fußkurbelergometrie. Med Sport 3:65–68

Google Scholar 

Ji S, Sommer A, Bloch W, Wahl P (2021) Comparison and performance validation of calculated and established anaerobic lactate thresholds in running. Medicina (Kaunas) 57(10):1117. https://doi.org/10.3390/medicina57101117

Article  PubMed  Google Scholar 

Langley JO, Ng SC, Todd EE et al (2024) V̇Lamax: determining the optimal test duration for maximal lactate formation rate during all-out sprint cycle ergometry. Eur J Appl Physiol. https://doi.org/10.1007/s00421-024-05456-9

Article  PubMed  Google Scholar 

Leo P, Mateo-March M, Valenzuela PL, Muriel X, Gandía-Soriano A, Giorgi A, Zabala M, Barranco-Gil D, Mujika I, Pallarés JG, Lucia A (2022) Influence of torque and cadence on power output production in cyclists. Int J sports Physiol Perform 18(1):27–36

Article  PubMed  Google Scholar 

Mader A (2003) Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J Appl Physiol 88:317–338

Article  CAS  PubMed  Google Scholar 

Mader A, Heck H (1986) A theory of the metabolic origin of “anaerobic threshold.” Int J Sports Med 7:45–65

Article 

Comments (0)

No login
gif