Obata T (2002) Dopamine efflux by MPTP and hydroxyl radical generation. J Neural Transm (Vienna) 109(9):1159–1180. https://doi.org/10.1007/s00702-001-0683-2
Article PubMed CAS Google Scholar
Gassen M, Lamensdorf I, Armony T, Finberg JP, Youdim MB (2003) Attenuation of methamphetamine induced dopaminergic neurotoxicity by flupirtine: microdialysis study on dopamine release and free radical generation. J Neural Transm (Vienna) 110(2):171–182. https://doi.org/10.1007/s00702-002-0784-6
Article PubMed CAS Google Scholar
Cenci MA (2007) Dopamine dysregulation of movement control in L-DOPA-induced dyskinesia. Trends Neurosci 30(5):236–243. https://doi.org/10.1016/j.tins.2007.03.005
Article PubMed CAS Google Scholar
Alter SP, Lenzi GM, Bernstein AI, Miller GW (2013) Vesicular integrity in Parkinson’s disease. Curr Neurol Neurosci Rep 13(7):362. https://doi.org/10.1007/s11910-013-0362-3
Article PubMed PubMed Central CAS Google Scholar
Chiueh CC, Krishna G, Tulsi P, Obata T, Lang K, Huang SJ, Murphy DL (1992) Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: effects of MPP+. Free Radic Biol Med 13(5):581–583. https://doi.org/10.1016/0891-5849(92)90151-6
Article PubMed CAS Google Scholar
Golembiowska K, Dziubina A, Kowalska M, Kaminska K (2008) Paradoxical effects of adenosine receptor ligands on hydroxyl radical generation by L-DOPA in the rat striatum. Pharmacol Rep 60(3):319–330
Dodani SC, Domaille DW, Nam CI, Miller EW, Finney LA, Vogt S, Chang CJ (2011) Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy. Proc Natl Acad Sci U S A 108(15):5980–5985. https://doi.org/10.1073/pnas.1009932108
Article PubMed PubMed Central Google Scholar
Bisaglia M, Bubacco L (2020) Copper ions and Parkinson’s disease: why is homeostasis so relevant? Biomolecules 10(2):195. https://doi.org/10.3390/biom10020195
Article PubMed PubMed Central CAS Google Scholar
D’Ambrosi N, Rossi L (2015) Copper at synapse: release, binding and modulation of neurotransmission. Neurochem Int 90:36–45. https://doi.org/10.1016/j.neuint.2015.07.006
Article PubMed CAS Google Scholar
Tarohda T, Yamamoto M, Amamo R (2004) Regional distribution of manganese, iron, copper, and zinc in the rat brain during development. Anal Bioanal Chem 380(2):240–246. https://doi.org/10.1007/s00216-004-2697-8
Article PubMed CAS Google Scholar
Wang W, Wu X, Yang CS, Zhang J (2021) An unrecognized fundamental relationship between neurotransmitters: glutamate protects against catecholamine oxidation. Antioxidants (Basel) 10(10):1564. https://doi.org/10.3390/antiox10101564
Article PubMed CAS Google Scholar
Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 57(4):1041–1048. https://doi.org/10.3233/JAD-160763
Article PubMed PubMed Central CAS Google Scholar
Plaitakis A, Shashidharan P (2000) Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson’s disease. J Neurol 247(Suppl 2):II25-35. https://doi.org/10.1007/pl00007757
Juneja LR, Chu D-C, Okubo T, Nagato Y, Yokogoshi H (1999) L-theanine——a unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci Technol 10:199–204. https://doi.org/10.1016/S0924-2244(99)00044-8
Ratih K, Lee YR, Chung KH, Song DH, Lee KJ, Kim DH, An JH (2023) L-theanine alleviates MPTP-induced Parkinson’s disease by targeting Wnt/beta-catenin signaling mediated by the MAPK signaling pathway. Int J Biol Macromol 226:90–101. https://doi.org/10.1016/j.ijbiomac.2022.12.030
Article PubMed CAS Google Scholar
Jia L, Wang F, Zhang K, Wang D, Wang X, Li X, Zhang J (2022) l-Theanine inhibits (-)-epigallocatechin-3-gallate oxidation via chelating copper. J Agric Food Chem 70(25):7751–7761. https://doi.org/10.1021/acs.jafc.2c01379
Article PubMed CAS Google Scholar
Carrasco N, Garrido M, Montenegro I, Madrid A, Hartley R, Gonzalez I, Rubilar M, Villena J, et al (2023) Antitumoral activity of leptocarpha rivularis flower extracts against gastric cancer cells. Int J Mol Sci 24(2):1429. https://doi.org/10.3390/ijms24021439
Zhang K, Dong R, Sun K, Wang X, Wang J, Yang CS, Zhang J (2017) Synergistic toxicity of epigallocatechin-3-gallate and diethyldithiocarbamate, a lethal encounter involving redox-active copper. Free Radic Biol Med 113:143–156. https://doi.org/10.1016/j.freeradbiomed.2017.09.027
Article PubMed CAS Google Scholar
Kota KP, Ziolkowska NE, Wei J, Peng J, Ordonez D, Raney C, Prigge J, Hooper JW, et al (2023) Development of a rapid image-based high-content imaging screening assay to evaluate therapeutic antibodies against the monkeypox virus. Antiviral Res 210:105513. https://doi.org/10.1016/j.antiviral.2022.105513
Article PubMed CAS Google Scholar
Wang J, Wang X, He Y, Jia L, Yang CS, Reiter RJ, Zhang J (2019) Antioxidant and pro-oxidant activities of melatonin in the presence of copper and polyphenols in vitro and in vivo. Cells 8(8):903. https://doi.org/10.3390/cells8080903
Article PubMed PubMed Central CAS Google Scholar
Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci U S A 93(5):1956–1961. https://doi.org/10.1073/pnas.93.5.1956
Article PubMed PubMed Central CAS Google Scholar
Wang N, Wang Y, Yu G, Yuan C, Ma J (2011) Quinoprotein adducts accumulate in the substantia nigra of aged rats and correlate with dopamine-induced toxicity in SH-SY5Y cells. Neurochem Res 36(11):2169–2175. https://doi.org/10.1007/s11064-011-0541-z
Article PubMed CAS Google Scholar
Spencer WA, Jeyabalan J, Kichambre S, Gupta RC (2011) Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: role of reactive oxygen species. Free Radic Biol Med 50(1):139–147. https://doi.org/10.1016/j.freeradbiomed.2010.10.693
Article PubMed CAS Google Scholar
Lynch SM, Frei B (1995) Reduction of copper, but not iron, by human low density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL. J Biol Chem 270(10):5158–5163. https://doi.org/10.1074/jbc.270.10.5158
Article PubMed CAS Google Scholar
Faro LRF, Costas-Ferreira C, Pantoja AA, Duran R (2022) Protective effects of antioxidants on striatal dopamine release induced by organophosphorus pesticides. Pestic Biochem Physiol 182:105035. https://doi.org/10.1016/j.pestbp.2022.105035
Article PubMed CAS Google Scholar
Navailles S, Lagiere M, Contini A, De Deurwaerdere P (2013) Multisite intracerebral microdialysis to study the mechanism of L-DOPA induced dopamine and serotonin release in the parkinsonian brain. ACS Chem Neurosci 4(5):680–692. https://doi.org/10.1021/cn400046e
Article PubMed PubMed Central CAS Google Scholar
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM (2020) Brain renin-angiotensin system at the intersect of physical and cognitive frailty. Front Neurosci 14:586314. https://doi.org/10.3389/fnins.2020.586314
Comments (0)