L-Theanine Effectively Protects Against Copper-Facilitated Dopamine Oxidation: Implication for Relieving Dopamine Overflow-Associated Neurotoxicities

Obata T (2002) Dopamine efflux by MPTP and hydroxyl radical generation. J Neural Transm (Vienna) 109(9):1159–1180. https://doi.org/10.1007/s00702-001-0683-2

Article  PubMed  CAS  Google Scholar 

Gassen M, Lamensdorf I, Armony T, Finberg JP, Youdim MB (2003) Attenuation of methamphetamine induced dopaminergic neurotoxicity by flupirtine: microdialysis study on dopamine release and free radical generation. J Neural Transm (Vienna) 110(2):171–182. https://doi.org/10.1007/s00702-002-0784-6

Article  PubMed  CAS  Google Scholar 

Cenci MA (2007) Dopamine dysregulation of movement control in L-DOPA-induced dyskinesia. Trends Neurosci 30(5):236–243. https://doi.org/10.1016/j.tins.2007.03.005

Article  PubMed  CAS  Google Scholar 

Alter SP, Lenzi GM, Bernstein AI, Miller GW (2013) Vesicular integrity in Parkinson’s disease. Curr Neurol Neurosci Rep 13(7):362. https://doi.org/10.1007/s11910-013-0362-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chiueh CC, Krishna G, Tulsi P, Obata T, Lang K, Huang SJ, Murphy DL (1992) Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: effects of MPP+. Free Radic Biol Med 13(5):581–583. https://doi.org/10.1016/0891-5849(92)90151-6

Article  PubMed  CAS  Google Scholar 

Golembiowska K, Dziubina A, Kowalska M, Kaminska K (2008) Paradoxical effects of adenosine receptor ligands on hydroxyl radical generation by L-DOPA in the rat striatum. Pharmacol Rep 60(3):319–330

PubMed  CAS  Google Scholar 

Dodani SC, Domaille DW, Nam CI, Miller EW, Finney LA, Vogt S, Chang CJ (2011) Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy. Proc Natl Acad Sci U S A 108(15):5980–5985. https://doi.org/10.1073/pnas.1009932108

Article  PubMed  PubMed Central  Google Scholar 

Bisaglia M, Bubacco L (2020) Copper ions and Parkinson’s disease: why is homeostasis so relevant? Biomolecules 10(2):195. https://doi.org/10.3390/biom10020195

Article  PubMed  PubMed Central  CAS  Google Scholar 

D’Ambrosi N, Rossi L (2015) Copper at synapse: release, binding and modulation of neurotransmission. Neurochem Int 90:36–45. https://doi.org/10.1016/j.neuint.2015.07.006

Article  PubMed  CAS  Google Scholar 

Tarohda T, Yamamoto M, Amamo R (2004) Regional distribution of manganese, iron, copper, and zinc in the rat brain during development. Anal Bioanal Chem 380(2):240–246. https://doi.org/10.1007/s00216-004-2697-8

Article  PubMed  CAS  Google Scholar 

Wang W, Wu X, Yang CS, Zhang J (2021) An unrecognized fundamental relationship between neurotransmitters: glutamate protects against catecholamine oxidation. Antioxidants (Basel) 10(10):1564. https://doi.org/10.3390/antiox10101564

Article  PubMed  CAS  Google Scholar 

Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 57(4):1041–1048. https://doi.org/10.3233/JAD-160763

Article  PubMed  PubMed Central  CAS  Google Scholar 

Plaitakis A, Shashidharan P (2000) Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson’s disease. J Neurol 247(Suppl 2):II25-35. https://doi.org/10.1007/pl00007757

Article  PubMed  Google Scholar 

Juneja LR, Chu D-C, Okubo T, Nagato Y, Yokogoshi H (1999) L-theanine——a unique amino acid of green tea and its relaxation effect in humans. Trends Food Sci Technol 10:199–204. https://doi.org/10.1016/S0924-2244(99)00044-8

Article  CAS  Google Scholar 

Ratih K, Lee YR, Chung KH, Song DH, Lee KJ, Kim DH, An JH (2023) L-theanine alleviates MPTP-induced Parkinson’s disease by targeting Wnt/beta-catenin signaling mediated by the MAPK signaling pathway. Int J Biol Macromol 226:90–101. https://doi.org/10.1016/j.ijbiomac.2022.12.030

Article  PubMed  CAS  Google Scholar 

Jia L, Wang F, Zhang K, Wang D, Wang X, Li X, Zhang J (2022) l-Theanine inhibits (-)-epigallocatechin-3-gallate oxidation via chelating copper. J Agric Food Chem 70(25):7751–7761. https://doi.org/10.1021/acs.jafc.2c01379

Article  PubMed  CAS  Google Scholar 

Carrasco N, Garrido M, Montenegro I, Madrid A, Hartley R, Gonzalez I, Rubilar M, Villena J, et al (2023) Antitumoral activity of leptocarpha rivularis flower extracts against gastric cancer cells. Int J Mol Sci 24(2):1429. https://doi.org/10.3390/ijms24021439

Article  CAS  Google Scholar 

Zhang K, Dong R, Sun K, Wang X, Wang J, Yang CS, Zhang J (2017) Synergistic toxicity of epigallocatechin-3-gallate and diethyldithiocarbamate, a lethal encounter involving redox-active copper. Free Radic Biol Med 113:143–156. https://doi.org/10.1016/j.freeradbiomed.2017.09.027

Article  PubMed  CAS  Google Scholar 

Kota KP, Ziolkowska NE, Wei J, Peng J, Ordonez D, Raney C, Prigge J, Hooper JW, et al (2023) Development of a rapid image-based high-content imaging screening assay to evaluate therapeutic antibodies against the monkeypox virus. Antiviral Res 210:105513. https://doi.org/10.1016/j.antiviral.2022.105513

Article  PubMed  CAS  Google Scholar 

Wang J, Wang X, He Y, Jia L, Yang CS, Reiter RJ, Zhang J (2019) Antioxidant and pro-oxidant activities of melatonin in the presence of copper and polyphenols in vitro and in vivo. Cells 8(8):903. https://doi.org/10.3390/cells8080903

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci U S A 93(5):1956–1961. https://doi.org/10.1073/pnas.93.5.1956

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang N, Wang Y, Yu G, Yuan C, Ma J (2011) Quinoprotein adducts accumulate in the substantia nigra of aged rats and correlate with dopamine-induced toxicity in SH-SY5Y cells. Neurochem Res 36(11):2169–2175. https://doi.org/10.1007/s11064-011-0541-z

Article  PubMed  CAS  Google Scholar 

Spencer WA, Jeyabalan J, Kichambre S, Gupta RC (2011) Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: role of reactive oxygen species. Free Radic Biol Med 50(1):139–147. https://doi.org/10.1016/j.freeradbiomed.2010.10.693

Article  PubMed  CAS  Google Scholar 

Lynch SM, Frei B (1995) Reduction of copper, but not iron, by human low density lipoprotein (LDL). Implications for metal ion-dependent oxidative modification of LDL. J Biol Chem 270(10):5158–5163. https://doi.org/10.1074/jbc.270.10.5158

Article  PubMed  CAS  Google Scholar 

Faro LRF, Costas-Ferreira C, Pantoja AA, Duran R (2022) Protective effects of antioxidants on striatal dopamine release induced by organophosphorus pesticides. Pestic Biochem Physiol 182:105035. https://doi.org/10.1016/j.pestbp.2022.105035

Article  PubMed  CAS  Google Scholar 

Navailles S, Lagiere M, Contini A, De Deurwaerdere P (2013) Multisite intracerebral microdialysis to study the mechanism of L-DOPA induced dopamine and serotonin release in the parkinsonian brain. ACS Chem Neurosci 4(5):680–692. https://doi.org/10.1021/cn400046e

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM (2020) Brain renin-angiotensin system at the intersect of physical and cognitive frailty. Front Neurosci 14:586314. https://doi.org/10.3389/fnins.2020.586314

Article  PubMed  PubMed Central 

Comments (0)

No login
gif