Ginger Extract Improves Cognitive Dysfunction via Modulation of Gut Microbiota-Derived Short-Chain Fatty Acids in D-Galactose/Ovariectomy-Induced Alzheimer-Like Disease

Frozza RL, Lourenco MV, De Felice FG (2018) Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects. Front Neurosci 12:37. https://doi.org/10.3389/fnins.2018.00037

Article  PubMed  PubMed Central  Google Scholar 

Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C (2021) APOE genotype and Alzheimer’s disease: the influence of lifestyle and environmental factors. ACS Chem Neurosci 12(15):2749–2764. https://doi.org/10.1021/acschemneuro.1c00295

Article  CAS  PubMed  Google Scholar 

Gibbs RB (2010) Estrogen therapy and cognition: a review of the cholinergic hypothesis. Endocr Rev 31(2):224–253

Article  CAS  PubMed  Google Scholar 

Pistollato F, Cano SS, Elio I, Vergara MM, Giampieri F, Battino M (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74(10):624

Article  PubMed  Google Scholar 

Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar SJ (2020) Gut microbiota and pro/prebiotics in Alzheimer’s disease. Aging (Albany NY) 12(6):5539

Article  CAS  PubMed  Google Scholar 

Li Z, Zhu H, Guo Y, Du X, Qin C (2020) Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer’s disease. J Neurochem 155(4):448–461

Article  CAS  PubMed  Google Scholar 

Noguchi H, Ohta M, Wakasugi S, Noguchi K, Nakamura N, Nakamura O, Miyakawa K, Takeya M et al (2002) Effect of the intestinal flora on amyloid deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Exp Anim 51(4):309–316

Article  CAS  PubMed  Google Scholar 

Kowalski K, Mulak A (2019) Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil 25(1):48–60. https://doi.org/10.5056/jnm18087

Article  PubMed  PubMed Central  Google Scholar 

Vo Van Giau, Wu SY, Jamerlan A, An SSA, Kim SY, Hulme J (2018) Microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients. https://doi.org/10.3390/nu10111765

Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693(Pt B):128–133. https://doi.org/10.1016/j.brainres.2018.03.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19(1):29–41. https://doi.org/10.1111/1462-2920.13589

Article  CAS  PubMed  Google Scholar 

Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN et al (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277. https://doi.org/10.3389/fimmu.2019.00277

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinelli V, Biscotti P, Martini D, Del Bo C, Marino M, Meroño T, Nikoloudaki O, Calabrese FM et al (2022) Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: a systematic review. Nutrients 14(13):2559. https://doi.org/10.3390/nu14132559

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M (2019) Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol 66(1):1–12. https://doi.org/10.18388/abp.2018_26

Article  CAS  PubMed  Google Scholar 

O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–1215. https://doi.org/10.1126/science.aac8469

Article  CAS  PubMed  Google Scholar 

Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95(1):50–60

Article  CAS  PubMed  Google Scholar 

Cummings JH, Pomare E, Branch W, Naylor C, MacFarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N et al (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155

Article  PubMed  PubMed Central  Google Scholar 

Haider S, Liaquat L, Shahzad S, Sadir S, Madiha S, Batool Z, Tabassum S, Saleem S et al (2015) A high dose of short term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process. Life Sci 124:110–119. https://doi.org/10.1016/j.lfs.2015.01.016

Article  CAS  PubMed  Google Scholar 

Azman KF, Zakaria R (2019) D-Galactose-induced accelerated aging model: an overview. Biogerontology 20(6):763–782. https://doi.org/10.1007/s10522-019-09837-y

Article  PubMed  Google Scholar 

Cui X, Zuo P, Zhang Q, Li X, Hu Y, Long J, Packer L, Liu J (2006) Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 83(8):1584–1590. https://doi.org/10.1002/jnr.20845

Article  CAS  PubMed  Google Scholar 

Hua X, Lei M, Zhang Y, Ding J, Han Q, Hu G, Xiao M (2007) Long-term D-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer’s disease. Life Sci 80(20):1897–1905. https://doi.org/10.1016/j.lfs.2007.02.030

Article  CAS  PubMed  Google Scholar 

Ibrahim WW, Abdelkader NF, Ismail HM, Khattab MM (2019) Escitalopram ameliorates cognitive impairment in D-galactose-injected ovariectomized rats: modulation of JNK, GSK-3β, and ERK signalling pathways. Sci Rep 9(1):1–14

Article  Google Scholar 

Kamel AS, Abdelkader NF, El-Rahman A, Sahar S, Emara M, Zaki HF, Khattab MM (2018) Stimulation of ACE2/ANG (1–7)/Mas axis by diminazene ameliorates Alzheimer’s disease in the D-galactose-ovariectomized rat model: role of PI3K/Akt pathway. Mol Neurobiol 55(10):8188–8202

Article  CAS  PubMed  Google Scholar 

Zhang Q, Li X, Cui X, Zuo P (2005) D-galactose injured neurogenesis in the hippocampus of adult mice. Neurol Res 27(5):552–556

Article  CAS  PubMed  Google Scholar 

WFO (2024) Zingiber officinale Roscoe. http://www.worldfloraonline.org/taxon/wfo-0000617397. Accessed 04 Nov 2024

Ho S-C, Chang K-S, Lin C-C (2013) Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem 141(3):3183–3191

Article  CAS  PubMed  Google Scholar 

Zeng G-F, Zhang Z-Y, Lu L, Xiao D-Q, Zong S-H, He J-M (2013) Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Res 16(2):124–133

Article  PubMed  Google Scholar 

Mošovská S, Nováková D, Kaliňák M (2015) Antioxidant activity of ginger extract and identification of its active components. PLoS ONE 8(2):115–119

Google Scholar 

Lee C, Park GH, Kim C-Y, Jang J-H (2011) [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem Toxicol 49(6):1261–1269

Article  CAS  PubMed  Google Scholar 

Tripathi S, Bruch D, Kittur DS (2008) Ginger extract inhibits LPS induced macrophage activation and function. BMC Complement Altern Med 8(1):1. https://doi.org/10.1186/1472-6882-8-1

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif