Frozza RL, Lourenco MV, De Felice FG (2018) Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects. Front Neurosci 12:37. https://doi.org/10.3389/fnins.2018.00037
Article PubMed PubMed Central Google Scholar
Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C (2021) APOE genotype and Alzheimer’s disease: the influence of lifestyle and environmental factors. ACS Chem Neurosci 12(15):2749–2764. https://doi.org/10.1021/acschemneuro.1c00295
Article CAS PubMed Google Scholar
Gibbs RB (2010) Estrogen therapy and cognition: a review of the cholinergic hypothesis. Endocr Rev 31(2):224–253
Article CAS PubMed Google Scholar
Pistollato F, Cano SS, Elio I, Vergara MM, Giampieri F, Battino M (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74(10):624
Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar SJ (2020) Gut microbiota and pro/prebiotics in Alzheimer’s disease. Aging (Albany NY) 12(6):5539
Article CAS PubMed Google Scholar
Li Z, Zhu H, Guo Y, Du X, Qin C (2020) Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer’s disease. J Neurochem 155(4):448–461
Article CAS PubMed Google Scholar
Noguchi H, Ohta M, Wakasugi S, Noguchi K, Nakamura N, Nakamura O, Miyakawa K, Takeya M et al (2002) Effect of the intestinal flora on amyloid deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Exp Anim 51(4):309–316
Article CAS PubMed Google Scholar
Kowalski K, Mulak A (2019) Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil 25(1):48–60. https://doi.org/10.5056/jnm18087
Article PubMed PubMed Central Google Scholar
Vo Van Giau, Wu SY, Jamerlan A, An SSA, Kim SY, Hulme J (2018) Microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients. https://doi.org/10.3390/nu10111765
Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693(Pt B):128–133. https://doi.org/10.1016/j.brainres.2018.03.015
Article CAS PubMed PubMed Central Google Scholar
Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19(1):29–41. https://doi.org/10.1111/1462-2920.13589
Article CAS PubMed Google Scholar
Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN et al (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277. https://doi.org/10.3389/fimmu.2019.00277
Article CAS PubMed PubMed Central Google Scholar
Vinelli V, Biscotti P, Martini D, Del Bo C, Marino M, Meroño T, Nikoloudaki O, Calabrese FM et al (2022) Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: a systematic review. Nutrients 14(13):2559. https://doi.org/10.3390/nu14132559
Article CAS PubMed PubMed Central Google Scholar
Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M (2019) Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol 66(1):1–12. https://doi.org/10.18388/abp.2018_26
Article CAS PubMed Google Scholar
O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–1215. https://doi.org/10.1126/science.aac8469
Article CAS PubMed Google Scholar
Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95(1):50–60
Article CAS PubMed Google Scholar
Cummings JH, Pomare E, Branch W, Naylor C, MacFarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227
Article CAS PubMed PubMed Central Google Scholar
Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N et al (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155
Article PubMed PubMed Central Google Scholar
Haider S, Liaquat L, Shahzad S, Sadir S, Madiha S, Batool Z, Tabassum S, Saleem S et al (2015) A high dose of short term exogenous D-galactose administration in young male rats produces symptoms simulating the natural aging process. Life Sci 124:110–119. https://doi.org/10.1016/j.lfs.2015.01.016
Article CAS PubMed Google Scholar
Azman KF, Zakaria R (2019) D-Galactose-induced accelerated aging model: an overview. Biogerontology 20(6):763–782. https://doi.org/10.1007/s10522-019-09837-y
Cui X, Zuo P, Zhang Q, Li X, Hu Y, Long J, Packer L, Liu J (2006) Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 83(8):1584–1590. https://doi.org/10.1002/jnr.20845
Article CAS PubMed Google Scholar
Hua X, Lei M, Zhang Y, Ding J, Han Q, Hu G, Xiao M (2007) Long-term D-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer’s disease. Life Sci 80(20):1897–1905. https://doi.org/10.1016/j.lfs.2007.02.030
Article CAS PubMed Google Scholar
Ibrahim WW, Abdelkader NF, Ismail HM, Khattab MM (2019) Escitalopram ameliorates cognitive impairment in D-galactose-injected ovariectomized rats: modulation of JNK, GSK-3β, and ERK signalling pathways. Sci Rep 9(1):1–14
Kamel AS, Abdelkader NF, El-Rahman A, Sahar S, Emara M, Zaki HF, Khattab MM (2018) Stimulation of ACE2/ANG (1–7)/Mas axis by diminazene ameliorates Alzheimer’s disease in the D-galactose-ovariectomized rat model: role of PI3K/Akt pathway. Mol Neurobiol 55(10):8188–8202
Article CAS PubMed Google Scholar
Zhang Q, Li X, Cui X, Zuo P (2005) D-galactose injured neurogenesis in the hippocampus of adult mice. Neurol Res 27(5):552–556
Article CAS PubMed Google Scholar
WFO (2024) Zingiber officinale Roscoe. http://www.worldfloraonline.org/taxon/wfo-0000617397. Accessed 04 Nov 2024
Ho S-C, Chang K-S, Lin C-C (2013) Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem 141(3):3183–3191
Article CAS PubMed Google Scholar
Zeng G-F, Zhang Z-Y, Lu L, Xiao D-Q, Zong S-H, He J-M (2013) Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Res 16(2):124–133
Mošovská S, Nováková D, Kaliňák M (2015) Antioxidant activity of ginger extract and identification of its active components. PLoS ONE 8(2):115–119
Lee C, Park GH, Kim C-Y, Jang J-H (2011) [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem Toxicol 49(6):1261–1269
Article CAS PubMed Google Scholar
Tripathi S, Bruch D, Kittur DS (2008) Ginger extract inhibits LPS induced macrophage activation and function. BMC Complement Altern Med 8(1):1. https://doi.org/10.1186/1472-6882-8-1
Comments (0)