Effect of L-Carnitine Level on the Risk of Neuromyelitis Optica Spectrum Disorders: A Two-Sample Mendelian Randomization Study

Jarius S, Wildemann B (2013) The history of neuromyelitis optica. J Neuroinflammation 10:8

Article  PubMed  PubMed Central  Google Scholar 

Jarius S, Wildemann B (2019) The history of neuromyelitis optica Part 2: ‘spinal amaurosis’, or how it all began. J Neuroinflammation 16(1):280

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jarius S, Wildemann B (2019) Devic’s index case: a critical reappraisal - AQP4-IgG-mediated neuromyelitis optica spectrum disorder, or rather MOG encephalomyelitis? J Neurol Sci 407:116396

Article  CAS  PubMed  Google Scholar 

Wang Y et al (2018) Blood brain barrier permeability could be a biomarker to predict severity of neuromyelitis optica spectrum disorders: a retrospective analysis. Front Neurol 9:648

Article  PubMed  PubMed Central  Google Scholar 

Waters P et al (2016) Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. J Neurol Neurosurg Psychiatry 87(9):1005–1015

Article  PubMed  Google Scholar 

Melamed E et al (2015) Update on biomarkers in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm 2(4):e134

Article  PubMed  PubMed Central  Google Scholar 

Popescu BF et al (2015) Diagnostic utility of aquaporin-4 in the analysis of active demyelinating lesions. Neurology 84(2):148–158

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lennon VA et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364(9451):2106–2112

Article  CAS  PubMed  Google Scholar 

Jacob A et al (2007) Neuromyelitis optica: changing concepts. J Neuroimmunol 187(1–2):126–138

Article  CAS  PubMed  Google Scholar 

Rotstein DL et al (2023) A national case-control study investigating demographic and environmental factors associated with NMOSD. Mult Scler 29(4–5):521–529

Article  PubMed  PubMed Central  Google Scholar 

Yeo T et al (2019) Classifying the antibody-negative NMO syndromes: clinical, imaging, and metabolomic modeling. Neurol Neuroimmunol Neuroinflamm 6(6):e626

Article  PubMed  PubMed Central  Google Scholar 

Mi Y et al (2023) Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat Metab 5(3):445–465

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones LL, McDonald DA, Borum PR (2010) Acylcarnitines: role in brain. Prog Lipid Res 49(1):61–75

Article  CAS  PubMed  Google Scholar 

Calabrese V et al (2006) Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 17(2):73–88

Article  CAS  PubMed  Google Scholar 

Cahova M et al (2015) Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats. Appl Physiol Nutr Metab 40(3):280–291

Article  CAS  PubMed  Google Scholar 

Alves E et al (2009) Acetyl-L-carnitine provides effective in vivo neuroprotection over 3,4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158(2):514–523

Article  CAS  PubMed  Google Scholar 

Deng J et al (2019) Nontarget metabolomics profiling of neuromyelitis optica spectrum disorder. Biomed Chromatogr 33(7):e4533

Article  PubMed  Google Scholar 

Haycock PC et al (2016) Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr 103(4):965–978

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23(R1):R89-98

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin SY et al (2014) An atlas of genetic influences on human blood metabolites. Nat Genet 46(6):543–550

Article  CAS  PubMed  PubMed Central  Google Scholar 

Estrada K et al (2018) A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. Nat Commun 9(1):1929

Article  PubMed  PubMed Central  Google Scholar 

Burgess S et al (2017) Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology 28(1):30–42

Article  PubMed  Google Scholar 

Verbanck M et al (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–25

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389

Article  PubMed  PubMed Central  Google Scholar 

Tradtrantip L et al (2017) Bystander mechanism for complement-initiated early oligodendrocyte injury in neuromyelitis optica. Acta Neuropathol 134(1):35–44

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira GC, McKenna MC (2017) L-carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem Res 42(6):1661–1675

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miecz D et al (2008) Localization of organic cation/carnitine transporter (OCTN2) in cells forming the blood-brain barrier. J Neurochem 104(1):113–123

Article  CAS  PubMed  Google Scholar 

Inazu M et al (2006) Functional expression of the organic cation/carnitine transporter 2 in rat astrocytes. J Neurochem 97(2):424–434

Article  CAS  PubMed  Google Scholar 

Ebert D, Haller RG, Walton ME (2003) Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci 23(13):5928–5935

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif