Molecular and Behavioral Neuroprotective Effects of Clavulanic Acid and Crocin in Haloperidol-Induced Tardive Dyskinesia in Rats

Vasan S, Padhy RK (2023) Tardive dyskinesia. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK448207

Caroff SN (2020) Recent advances in the pharmacology of tardive dyskinesia. Clin Psychopharmacol Neurosci 18(4):493

Article  PubMed  PubMed Central  CAS  Google Scholar 

Waln O, Jankovic J (2013) An update on tardive dyskinesia: from phenomenology to treatment. Tremor Other Hyperkinet Mov (N Y) 3. https://doi.org/10.7916/D88P5Z71

Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157(4):514–520

Article  PubMed  CAS  Google Scholar 

Silvestri S, Seeman MV, Negrete JC, Houle S, Shammi CM, Remington GJ, Kapur S, Zipursky RB, et al (2000) Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: a clinical PET study. Psychopharmacology 152(2):174–180. https://doi.org/10.1007/s002130000532

Article  PubMed  CAS  Google Scholar 

Kapur S, Remington G, Jones C, Wilson A, DaSilva J, Houle S, Zipursky R (1996) High levels of dopamine D2 receptor occupancy with low-dose haloperidol treatment: a PET study. Am J Psychiatry 153(7):948–950

Article  PubMed  CAS  Google Scholar 

Turrone P, Remington G, Kapur S, Nobrega JN (2003) The relationship between dopamine D2 receptor occupancy and the vacuous chewing movement syndrome in rats. Psychopharmacology 165(2):166–171. https://doi.org/10.1007/s00213-002-1259-z

Article  PubMed  CAS  Google Scholar 

Turrone P, Remington G, Kapur S, Nobrega JN (2003) Differential effects of within-day continuous vs. transient dopamine D2 receptor occupancy in the development of vacuous chewing movements (VCMs) in rats. Neuropsychopharmacol 28 (8):1433–1439. https://doi.org/10.1038/sj.npp.1300233

Turrone P, Remington G, Nobrega JN (2002) The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D2 receptor occupancy? Neurosci Biobehav Rev 26(3):361–380

Article  PubMed  CAS  Google Scholar 

Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU et al (2018) Molecular targets of atypical antipsychotics: from mechanism of action to clinical differences. Pharmacol Ther 192:20–41

Article  PubMed  CAS  Google Scholar 

Seeman P (2002) Atypical antipsychotics: mechanism of action. Can J Psychiatry 47(1):27–38

Article  PubMed  Google Scholar 

Arana GW (2000) An overview of side effects caused by typical antipsychotics. J Clin Psychiatry 61(4):5–13

PubMed  CAS  Google Scholar 

Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155(9):1207–1213. https://doi.org/10.1176/ajp.155.9.1207

Article  PubMed  CAS  Google Scholar 

Lohr JB, Kuczenski R, Niculescu AB (2003) Oxidative mechanisms and tardive dyskinesia. CNS Drugs 17(1):47–62. https://doi.org/10.2165/00023210-200317010-00004

Article  PubMed  CAS  Google Scholar 

Cho CH, Lee HJ (2013) Oxidative stress and tardive dyskinesia: pharmacogenetic evidence. Prog Neuropsychopharmacol Biol Psychiatry 46:207–213. https://doi.org/10.1016/j.pnpbp.2012.10.018

Article  PubMed  CAS  Google Scholar 

Galili-Mosberg R, Gil-Ad I, Weizman A, Melamed E, Offen D (2000) Haloperidol–induced neurotoxicity–possible implications for tardive dyskinesia. J Neural Transm 107(4):479–490

Article  CAS  Google Scholar 

Bishnoi M, Chopra K, Kulkarni SK (2008) Activation of striatal inflammatory mediators and caspase-3 is central to haloperidol-induced orofacial dyskinesia. Eur J Pharmacol 590(1–3):241–245

Article  PubMed  CAS  Google Scholar 

Bishnoi M, Chopra K, Kulkarni SK (2008) Differential striatal levels of TNF-α, NFκB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1473–1478

Article  PubMed  CAS  Google Scholar 

Jiang Q, Zhang X, Lu X, Li Y, Lu C, Chi J, Ma Y, Shi X et al (2023) Genetic susceptibility to tardive dyskinesia and cognitive impairments in Chinese Han schizophrenia: role of oxidative stress-related and adenosine receptor genes. Neuropsychiatr DisTreat 19:2499–2509

CAS  Google Scholar 

Tsermpini EE, Redenšek S, Dolžan V (2022) Genetic factors associated with tardive dyskinesia: from pre-clinical models to clinical studies. Front Pharmacol 12:834129

Article  PubMed  PubMed Central  Google Scholar 

Casey D (1990) Tardive dyskinesia. Western J Med 153(5):535

CAS  Google Scholar 

Loonen AJ (2023) Putative role of immune reactions in the mechanism of tardive dyskinesia. Brain, Behavior, Immunity-Health 33:100687

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu Q, Yuan F, Zhang S, Liu W, Miao Q, Zheng X, Lu S, Hou K (2022) Correlation of blood biochemical markers with tardive dyskinesia in schizophrenic patients. Dis Markers 1:1767989

Google Scholar 

Osacka J, Kiss A, Pirnik Z (2022) Possible involvement of apoptosis in the antipsychotics side effects: a mini-review. Clin Exp Pharmacol Physiol 49(8):836–847

Article  PubMed  CAS  Google Scholar 

Li N, Li Y, Yu T, Gou M, Chen W, Wang X, Tong J, Chen S et al (2024) Immunosenescence-related T cell phenotypes and white matter in schizophrenia patients with tardive dyskinesia. Schizophr Res 269:36–47

Article  PubMed  CAS  Google Scholar 

Takeuchi H, Mori Y, Tsutsumi Y (2022) Pathophysiology, prognosis and treatment of tardive dyskinesia. Therapeutic Adv Psychopharmacol 12:20451253221117310

Article  Google Scholar 

Ali Z, Roque A, El-Mallakh RS (2020) A unifying theory for the pathoetiologic mechanism of tardive dyskinesia. Med Hypotheses 140:109682

Article  PubMed  CAS  Google Scholar 

Yttri EA, Dudman JT (2016) Opponent and bidirectional control of movement velocity in the basal ganglia. Nature 533(7603):402–406

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barbera G, Liang B, Zhang L, Gerfen CR, Culurciello E, Chen R, Li Y, Lin D-T (2016) Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron 92(1):202–213

Article  PubMed  PubMed Central  CAS  Google Scholar 

Margolese HC, Chouinard G, Kolivakis TT, Beauclair L, Miller R (2005) Tardive dyskinesia in the era of typical and atypical antipsychotics Part 1.: pathophysiology and mechanisms of induction. Can J Psychiatry 50(9):541–547. https://doi.org/10.1177/070674370505000907

Article  PubMed  Google Scholar 

Casey DE (2000) Tardive dyskinesia: pathophysiology and animal models. J Clin Psychiatry 61(Suppl 4):5–9

PubMed  CAS  Google Scholar 

Sulzer D, Cragg SJ, Rice ME (2016) Striatal dopamine neurotransmission: regulation of release and uptake. Basal ganglia 6(3):123–148

Article  PubMed  PubMed Central  Google Scholar 

Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76(1):33–50

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58(7):951–961

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif