https://www.merriam-webster.com/dictionary/artificial%20intelligence. Accessed 11 Jun 2025
Zhao D, Wang W, Tang T, Zhang YY, Yu C (2023) Current progress in artificial intelligence-assisted medical image analysis for chronic kidney disease: a literature review. Comput Struct Biotechnol J 21:3315–3326
Article PubMed PubMed Central Google Scholar
Hermsen M, de Bel T, den Boer M, Steenbergen EJ, Kers J, Florquin S, Roelofs J, Stegall MD, Alexander MP, Smith BH, Smeets B, Hilbrands LB, van der Laak J (2019) Deep learning-based histopathologic assessment of kidney tissue. J Am Soc Nephrol 30:1968–1979
Article PubMed PubMed Central Google Scholar
Hermsen M, Ciompi F, Adefidipe A, Denic A, Dendooven A, Smith BH, van Midden D, Brasen JH, Kers J, Stegall MD, Bandi P, Nguyen T, Swiderska-Chadaj Z, Smeets B, Hilbrands LB, van der Laak J (2022) Convolutional neural networks for the evaluation of chronic and inflammatory lesions in kidney transplant biopsies. Am J Pathol 192:1418–1432
Article CAS PubMed Google Scholar
Tomasev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, Mottram A, Meyer C, Ravuri S, Protsyuk I, Connell A, Hughes CO, Karthikesalingam A, Cornebise J, Montgomery H, Rees G, Laing C, Baker CR, Peterson K, Reeves R, Hassabis D, King D, Suleyman M, Back T, Nielson C, Ledsam JR, Mohamed S (2019) A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572:116–119
Article CAS PubMed PubMed Central Google Scholar
Tsai MC, Lu HH, Chang YC, Huang YC, Fu LS (2022) Automatic screening of pediatric renal ultrasound abnormalities: deep learning and transfer learning approach. JMIR Med Inform 10:e40878
Article PubMed PubMed Central Google Scholar
Kuo CC, Chang CM, Liu KT, Lin WK, Chiang HY, Chung CW, Ho MR, Sun PR, Yang RL, Chen KT (2019) Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ Digit Med 2:29
Article PubMed PubMed Central Google Scholar
Miguel OX, Kaczmarek E, Lee I, Ducharme R, Dingwall-Harvey ALJ, Rennicks White R, Bonin B, Aviv RI, Hawken S, Armour CM, Dick K, Walker MC (2024) Deep learning prediction of renal anomalies for prenatal ultrasound diagnosis. Sci Rep 14:9013
Article CAS PubMed PubMed Central Google Scholar
Song SH, Han JH, Kim KS, Cho YA, Youn HJ, Kim YI, Kweon J (2022) Deep-learning segmentation of ultrasound images for automated calculation of the hydronephrosis area to renal parenchyma ratio. Investig Clin Urol 63:455–463
Article PubMed PubMed Central Google Scholar
Yin S, Peng Q, Li H, Zhang Z, You X, Fischer K, Furth SL, Tasian GE, Fan Y (2020) Computer-aided diagnosis of congenital abnormalities of the kidney and urinary tract in children using a multi-instance deep learning method based on ultrasound imaging data. Proc IEEE Int Symp Biomed Imaging 2020:1347–1350
PubMed PubMed Central Google Scholar
Yin S, Peng Q, Li H, Zhang Z, You X, Fischer K, Furth SL, Fan Y, Tasian GE (2020) Multi-instance deep learning of ultrasound imaging data for pattern classification of congenital abnormalities of the kidney and urinary tract in children. Urology 142:183–189
Kwong JC, Khondker A, Kim JK, Chua M, Keefe DT, Dos Santos J, Skreta M, Erdman L, D’Souza N, Selman AF, Weaver J, Weiss DA, Long C, Tasian G, Teoh CW, Rickard M, Lorenzo AJ (2022) Posterior urethral valves outcomes prediction (PUVOP): a machine learning tool to predict clinically relevant outcomes in boys with posterior urethral valves. Pediatr Nephrol 37:1067–1074
Weaver JK, Milford K, Rickard M, Logan J, Erdman L, Viteri B, D’Souza N, Cucchiara A, Skreta M, Keefe D, Shah S, Selman A, Fischer K, Weiss DA, Long CJ, Lorenzo A, Fan Y, Tasian GE (2023) Deep learning imaging features derived from kidney ultrasounds predict chronic kidney disease progression in children with posterior urethral valves. Pediatr Nephrol 38(3):839–846
Zhang K, Liu X, Xu J, Yuan J, Cai W, Chen T, Wang K, Gao Y, Nie S, Xu X, Qin X, Su Y, Xu W, Olvera A, Xue K, Li Z, Zhang M, Zeng X, Zhang CL, Li O, Zhang EE, Zhu J, Xu Y, Kermany D, Zhou K, Pan Y, Li S, Lai IF, Chi Y, Wang C, Pei M, Zang G, Zhang Q, Lau J, Lam D, Zou X, Wumaier A, Wang J, Shen Y, Hou FF, Zhang P, Xu T, Zhou Y, Wang G (2021) Deep-learning models for the detection and incidence prediction of chronic kidney disease and type 2 diabetes from retinal fundus images. Nat Biomed Eng 5:533–545
Article CAS PubMed Google Scholar
Feng C, Ong K, Young DM, Chen B, Li L, Huo X, Lu H, Gu W, Liu F, Tang H, Zhao M, Yang M, Zhu K, Huang L, Wang Q, Marini GPL, Gui K, Han H, Sanders SJ, Li L, Yu W, Mao J (2024) Artificial intelligence-assisted quantification and assessment of whole slide images for pediatric kidney disease diagnosis. Bioinformatics 40:btad740
Article CAS PubMed Google Scholar
van der Kamp A, de Bel T, van Alst L, Rutgers J, van den Heuvel-Eibrink MM, Mavinkurve-Groothuis AMC, van der Laak J, de Krijger RR (2023) Automated deep learning-based classification of Wilms tumor histopathology. Cancers (Basel) 15:2656
Testa F, Fontana F, Pollastri F, Chester J, Leonelli M, Giaroni F, Gualtieri F, Bolelli F, Mancini E, Nordio M, Sacco P, Ligabue G, Giovanella S, Ferri M, Alfano G, Gesualdo L, Cimino S, Donati G, Grana C, Magistroni R (2022) Automated prediction of kidney failure in IgA nephropathy with deep learning from biopsy images. Clin J Am Soc Nephrol 17:1316–1324
Article CAS PubMed PubMed Central Google Scholar
Luo Y, Liang J, Hu X, Tang Z, Zhang J, Han L, Dong Z, Deng W, Miao B, Ren Y, Na N (2021) Deep learning algorithms for the prediction of posttransplant renal function in deceased-donor kidney recipients: a preliminary study based on pretransplant biopsy. Front Med (Lausanne) 8:676461
Marsh JN, Liu TC, Wilson PC, Swamidass SJ, Gaut JP (2021) Development and validation of a deep learning model to quantify glomerulosclerosis in kidney biopsy specimens. JAMA Netw Open 4:e2030939
Article PubMed PubMed Central Google Scholar
Cosma C, Radi A, Cattano R, Zanobini P, Bonaccorsi G, Lorini C, Del Riccio M (2025) Exploring chatbot contributions to enhancing vaccine literacy and uptake: a scoping review of the literature. Vaccine 44:126559
Omur Arca D, Erdemir I, Kara F, Shermatov N, Odacioglu M, Ibisoglu E, Hanci FB, Sagiroglu G, Hanci V (2024) Assessing the readability, reliability, and quality of artificial intelligence chatbot responses to the 100 most searched queries about cardiopulmonary resuscitation: an observational study. Medicine (Baltimore) 103:e38352
Shiferaw MW, Zheng T, Winter A, Mike LA, Chan LN (2024) Assessing the accuracy and quality of artificial intelligence (AI) chatbot-generated responses in making patient-specific drug-therapy and healthcare-related decisions. BMC Med Inform Decis Mak 24:404
Article PubMed PubMed Central Google Scholar
Gabrielli S, Rizzi S, Carbone S, Donisi V (2020) A chatbot-based coaching intervention for adolescents to promote life skills: pilot study. JMIR Hum Factors 7:e16762
Article PubMed PubMed Central Google Scholar
Chen P, Li Y, Zhang X, Feng X, Sun X (2024) The acceptability and effectiveness of artificial intelligence-based chatbot for hypertensive patients in community: protocol for a mixed-methods study. BMC Public Health 24:2266
Article PubMed PubMed Central Google Scholar
Echeazarra L, Pereira J, Saracho R (2021) Tensiobot: a chatbot assistant for self-managed in-house blood pressure checking. J Med Syst 45:54
Ye Q, Li Y, Liu H, Mao J, Jiang H (2023) Machine learning models for predicting steroid-resistant of nephrotic syndrome. Front Immunol 14:1090241
Article CAS PubMed PubMed Central Google Scholar
Nanga TM, Doan TTP, Marquet P, Musuamba FT (2019) Toward a robust tool for pharmacokinetic-based personalization of treatment with tacrolimus in solid organ transplantation: a model-based meta-analysis approach. Br J Clin Pharmacol 85:2793–2823
Article CAS PubMed PubMed Central Google Scholar
Zaza G, Granata S, Tomei P, Dalla Gassa A, Lupo A (2015) Personalization of the immunosuppressive treatment in renal transplant recipients: the great challenge in “omics” medicine. Int J Mol Sci 16:4281–4305
Article CAS PubMed PubMed Central Google Scholar
Galli EG, Taietti C, Borghi M (2011) Personalization of automated peritoneal dialysis treatment using a computer modeling system. Adv Perit Dial 27:90–96
Comments (0)