Correlation between polymorphisms of the gene and peritoneal function in children on chronic peritoneal dialysis

Himmelfarb J, Vanholder R, Mehrotra R, Tonelli M (2020) The current and future landscape of dialysis. Nat Rev Nephrol 16:573–585. https://doi.org/10.1038/s41581-020-0315-4

Article  PubMed  PubMed Central  Google Scholar 

Kher V (2002) End-stage renal disease in developing countries. Kidney Int 62:350–362

Article  PubMed  Google Scholar 

Teitelbaum I (2021) Peritoneal dialysis. N Engl J Med 385:1786–1795. https://doi.org/10.1056/NEJMra2100152

Article  CAS  PubMed  Google Scholar 

Morelle J, Devuyst O (2015) Water and solute transport across the peritoneal membrane. Curr Opin Nephrol Hypertens 24:434–443. https://doi.org/10.1097/MNH.0000000000000151

Article  CAS  PubMed  Google Scholar 

Moon C, Preston GM, Griffin CA, Jabs EW, Agre P (1993) The human aquaporin-CHIP gene. Structure, organization, and chromosomal localization. J Biol Chem 268:15772–15778

Article  CAS  PubMed  Google Scholar 

Rivera MA, Martínez JL, Carrion A, Fahey TD (2011) AQP-1 association with body fluid loss in 10-km runners. Int J Sports Med 32:229–233. https://doi.org/10.1055/s-0030-1268489

Article  CAS  PubMed  Google Scholar 

Morelle J, Marechal C, Yu Z, Debaix H, Corre T, Lambie M, Verduijn M, Dekker F, Bovy P, Evenepoel P, Bammens B, Selgas R, Bajo MA, Coester AM, Sow A, Hautem N, Struijk DG, Krediet RT, Balligand JL, Goffin E, Crott R, Ripoche P, Davies S, Devuyst O (2021) AQP1 promoter variant, water transport, and outcomes in peritoneal dialysis. N Engl J Med 385:1570–1580. https://doi.org/10.1056/NEJMoa2034279

Article  CAS  PubMed  Google Scholar 

Zhang W, Freichel M, van der Hoeven F, Nawroth PP, Katus H, Kälble F, Zitron E, Schwenger V (2016) Novel endothelial cell-specific AQP1 knockout mice confirm the crucial role of endothelial AQP1 in ultrafiltration during peritoneal dialysis. PLoS One 11:e0145513. https://doi.org/10.1371/journal.pone.0145513

Downie M, Shroff R, Bockenhauer D (2022) Is my PET in my genes? Pediatr Nephrol 37:1175–1178. https://doi.org/10.1007/s00467-022-05452-1

Article  PubMed  Google Scholar 

Hwang YH, Son MJ, Yang J, Kim K, Chung W, Joo KW, Kim Y, Ahn C, Oh KH (2009) Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit Dial Int 29:81–88

Article  CAS  PubMed  Google Scholar 

Ding L, Shao X, Cao L, Fang W, Yan H, Huang J, Gu A, Yu Z, Qi C, Chang X, Ni Z (2016) Possible role of IL-6 and TIE2 gene polymorphisms in predicting the initial high transport status in patients with peritoneal dialysis: an observational study. BMJ Open 6:e012967. https://doi.org/10.1136/bmjopen-2016-012967

Article  PubMed  PubMed Central  Google Scholar 

Qian Y, Ding L, Cao L, Yu Z, Shao X, Wang L, Zhang M, Wang Q, Che X, Jiang N, Yan H, Fang W, Jin Y, Huang J, Gu A, Ni Z (2022) Gene polymorphisms of VEGF and KDR are associated with initial fast peritoneal solute transfer rate in peritoneal dialysis. BMC Nephrol 23:365. https://doi.org/10.1186/s12882-022-02975-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillerot G, Goffin E, Michel C, Evenepoel P, Biesen W, Tintillier M, Stenvinkel P, Heimbarger O, Lindholm B, Nordfors L (2005) Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int 67:2477–2487

Article  PubMed  Google Scholar 

Teitelbaum I (2015) Ultrafiltration failure in peritoneal dialysis: a pathophysiologic approach. Blood Purif 39:70–73. https://doi.org/10.1159/000368972

Article  CAS  PubMed  Google Scholar 

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54:1.30.1-1.30.33. https://doi.org/10.1002/cpbi.5

Article  PubMed  Google Scholar 

Saunders CJ, Posthumus M, O’Connell K, September AV, Collins M (2015) A variant within the AQP1 3’-untranslated region is associated with running performance, but not weight changes, during an Ironman triathlon. J Sports Sci 33:1342–1348. https://doi.org/10.1080/02640414.2014.989535

Article  PubMed  Google Scholar 

Rivera MA, Fahey TD (2019) Association between aquaporin-1 and endurance performance: a systematic review. Sports Med Open 5:40. https://doi.org/10.1186/s40798-019-0213-0

Article  PubMed  PubMed Central  Google Scholar 

Levin EJ, Zhou M (2014) Structure of urea transporters. Subcell Biochem 73:65–78. https://doi.org/10.1007/978-94-017-9343-8_5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Müller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle PR (1997) Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99:403–413

Article  PubMed  PubMed Central  Google Scholar 

Zhao D, Bankir L, Qian L, Yang D, Yang B (2006) Urea and urine concentrating ability in mice lacking AQP1 and AQP3. Am J Physiol Renal Physiol 291:F429–F438

Article  CAS  PubMed  Google Scholar 

Zhai Y, Bloch J, Hömme M, Schaefer J, Hackert T, Philippin B, Schwenger V, Schaefer F, Schmitt CP (2012) Buffer-dependent regulation of aquaporin-1 expression and function in human peritoneal mesothelial cells. Pediatr Nephrol 27:1165–1177. https://doi.org/10.1007/s00467-012-2120-1

Article  PubMed  Google Scholar 

Marinovic I, Bartosova M, Levai E, Herzog R, Saleem A, Du Z, Zhang C, Sacnun JM, Pitaraki E, Sinis S, Damgov I, Krunic D, Lajqi T, Al-Saeedi M, Szabo JA, Hausmann M, Pap D, Kratochwill K, Krug SM, Zarogiannis SG, Schmitt CP (2025) Molecular and functional characterization of the peritoneal mesothelium, a barrier for solute transport. Function 6:zqae051. https://doi.org/10.1093/function/zqae051

Article  PubMed  Google Scholar 

Comments (0)

No login
gif