Himmelfarb J, Vanholder R, Mehrotra R, Tonelli M (2020) The current and future landscape of dialysis. Nat Rev Nephrol 16:573–585. https://doi.org/10.1038/s41581-020-0315-4
Article PubMed PubMed Central Google Scholar
Kher V (2002) End-stage renal disease in developing countries. Kidney Int 62:350–362
Teitelbaum I (2021) Peritoneal dialysis. N Engl J Med 385:1786–1795. https://doi.org/10.1056/NEJMra2100152
Article CAS PubMed Google Scholar
Morelle J, Devuyst O (2015) Water and solute transport across the peritoneal membrane. Curr Opin Nephrol Hypertens 24:434–443. https://doi.org/10.1097/MNH.0000000000000151
Article CAS PubMed Google Scholar
Moon C, Preston GM, Griffin CA, Jabs EW, Agre P (1993) The human aquaporin-CHIP gene. Structure, organization, and chromosomal localization. J Biol Chem 268:15772–15778
Article CAS PubMed Google Scholar
Rivera MA, Martínez JL, Carrion A, Fahey TD (2011) AQP-1 association with body fluid loss in 10-km runners. Int J Sports Med 32:229–233. https://doi.org/10.1055/s-0030-1268489
Article CAS PubMed Google Scholar
Morelle J, Marechal C, Yu Z, Debaix H, Corre T, Lambie M, Verduijn M, Dekker F, Bovy P, Evenepoel P, Bammens B, Selgas R, Bajo MA, Coester AM, Sow A, Hautem N, Struijk DG, Krediet RT, Balligand JL, Goffin E, Crott R, Ripoche P, Davies S, Devuyst O (2021) AQP1 promoter variant, water transport, and outcomes in peritoneal dialysis. N Engl J Med 385:1570–1580. https://doi.org/10.1056/NEJMoa2034279
Article CAS PubMed Google Scholar
Zhang W, Freichel M, van der Hoeven F, Nawroth PP, Katus H, Kälble F, Zitron E, Schwenger V (2016) Novel endothelial cell-specific AQP1 knockout mice confirm the crucial role of endothelial AQP1 in ultrafiltration during peritoneal dialysis. PLoS One 11:e0145513. https://doi.org/10.1371/journal.pone.0145513
Downie M, Shroff R, Bockenhauer D (2022) Is my PET in my genes? Pediatr Nephrol 37:1175–1178. https://doi.org/10.1007/s00467-022-05452-1
Hwang YH, Son MJ, Yang J, Kim K, Chung W, Joo KW, Kim Y, Ahn C, Oh KH (2009) Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit Dial Int 29:81–88
Article CAS PubMed Google Scholar
Ding L, Shao X, Cao L, Fang W, Yan H, Huang J, Gu A, Yu Z, Qi C, Chang X, Ni Z (2016) Possible role of IL-6 and TIE2 gene polymorphisms in predicting the initial high transport status in patients with peritoneal dialysis: an observational study. BMJ Open 6:e012967. https://doi.org/10.1136/bmjopen-2016-012967
Article PubMed PubMed Central Google Scholar
Qian Y, Ding L, Cao L, Yu Z, Shao X, Wang L, Zhang M, Wang Q, Che X, Jiang N, Yan H, Fang W, Jin Y, Huang J, Gu A, Ni Z (2022) Gene polymorphisms of VEGF and KDR are associated with initial fast peritoneal solute transfer rate in peritoneal dialysis. BMC Nephrol 23:365. https://doi.org/10.1186/s12882-022-02975-5
Article CAS PubMed PubMed Central Google Scholar
Gillerot G, Goffin E, Michel C, Evenepoel P, Biesen W, Tintillier M, Stenvinkel P, Heimbarger O, Lindholm B, Nordfors L (2005) Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int 67:2477–2487
Teitelbaum I (2015) Ultrafiltration failure in peritoneal dialysis: a pathophysiologic approach. Blood Purif 39:70–73. https://doi.org/10.1159/000368972
Article CAS PubMed Google Scholar
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54:1.30.1-1.30.33. https://doi.org/10.1002/cpbi.5
Saunders CJ, Posthumus M, O’Connell K, September AV, Collins M (2015) A variant within the AQP1 3’-untranslated region is associated with running performance, but not weight changes, during an Ironman triathlon. J Sports Sci 33:1342–1348. https://doi.org/10.1080/02640414.2014.989535
Rivera MA, Fahey TD (2019) Association between aquaporin-1 and endurance performance: a systematic review. Sports Med Open 5:40. https://doi.org/10.1186/s40798-019-0213-0
Article PubMed PubMed Central Google Scholar
Levin EJ, Zhou M (2014) Structure of urea transporters. Subcell Biochem 73:65–78. https://doi.org/10.1007/978-94-017-9343-8_5
Article CAS PubMed PubMed Central Google Scholar
Müller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle PR (1997) Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99:403–413
Article PubMed PubMed Central Google Scholar
Zhao D, Bankir L, Qian L, Yang D, Yang B (2006) Urea and urine concentrating ability in mice lacking AQP1 and AQP3. Am J Physiol Renal Physiol 291:F429–F438
Article CAS PubMed Google Scholar
Zhai Y, Bloch J, Hömme M, Schaefer J, Hackert T, Philippin B, Schwenger V, Schaefer F, Schmitt CP (2012) Buffer-dependent regulation of aquaporin-1 expression and function in human peritoneal mesothelial cells. Pediatr Nephrol 27:1165–1177. https://doi.org/10.1007/s00467-012-2120-1
Marinovic I, Bartosova M, Levai E, Herzog R, Saleem A, Du Z, Zhang C, Sacnun JM, Pitaraki E, Sinis S, Damgov I, Krunic D, Lajqi T, Al-Saeedi M, Szabo JA, Hausmann M, Pap D, Kratochwill K, Krug SM, Zarogiannis SG, Schmitt CP (2025) Molecular and functional characterization of the peritoneal mesothelium, a barrier for solute transport. Function 6:zqae051. https://doi.org/10.1093/function/zqae051
Comments (0)