Machine learning and single-cell analysis uncover distinctive characteristics of CD300LG within the TNBC immune microenvironment: experimental validation

Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N. Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol. 2015;172(17):4228–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022;15(1):121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Laurentiis M, Cianniello D, Caputo R, Stanzione B, Arpino G, Cinieri S, et al. Treatment of triple negative breast cancer (TNBC): current options and future perspectives. Cancer Treat Rev. 2010;36(Suppl 3):S80–6.

Article  PubMed  Google Scholar 

Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw. 2020;18(4):479–89.

Article  CAS  PubMed  Google Scholar 

Li Z, Qiu Y, Lu W, Jiang Y, Wang J. Immunotherapeutic interventions of triple negative breast cancer. J Transl Med. 2018;16(1):147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61.

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Jiang Q, Dong C. Metabolic reprogramming in triple-negative breast cancer. Cancer Biol Med. 2020;17(1):44–59.

Article  PubMed  PubMed Central  Google Scholar 

Cao L, Niu Y. Triple negative breast cancer: special histological types and emerging therapeutic methods. Cancer Biol Med. 2020;17(2):293–306.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, Ali A, Yachioui DEI, Le Dévédec SE, Hankemeier T. Lipid dysregulation in triple negative breast cancer: Insights from mass spectrometry-based approaches. Prog Lipid Res. 2025;98: 101330.

Article  CAS  PubMed  Google Scholar 

Hwang SY, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther. 2019;199:30–57.

Article  CAS  PubMed  Google Scholar 

Stevens KN, Vachon CM, Couch FJ. Genetic susceptibility to triple-negative breast cancer. Cancer Res. 2013;73(7):2025–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahuja A, Al-Zogbi L, Krieger A. Application of noise-reduction techniques to machine learning algorithms for breast cancer tumor identification. Comput Biol Med. 2021;135: 104576.

Article  CAS  PubMed  Google Scholar 

Das SC, Tasnim W, Rana HK, Acharjee UK, Islam MM, Khatun R. Comprehensive bioinformatics and machine learning analyses for breast cancer staging using TCGA dataset. Briefings Bioinform. 2024. https://doi.org/10.1093/bib/bbae628.

Article  Google Scholar 

Lu X, Gou Z, Chen H, Li L, Chen F, Bao C, et al. Gene panel predicts neoadjuvant chemoimmunotherapy response and benefit from immunotherapy in HER2-negative breast cancer. J Immunother Cancer. 2024;12(8):e009587.

Article  PubMed  PubMed Central  Google Scholar 

Mandair D, Reis-Filho JS, Ashworth A. Biological insights and novel biomarker discovery through deep learning approaches in breast cancer histopathology. NPJ Breast Cancer. 2023;9(1):21.

Article  PubMed  PubMed Central  Google Scholar 

Wu X, Chen M, Liu K, Wu Y, Feng Y, Fu S, et al. Molecular classification of geriatric breast cancer displays distinct senescent subgroups of prognostic significance. Mol Ther Nucleic Acids. 2024;35(4): 102309.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang C, Zhai W, Ma Y, Wu M, Cai Q, Huang J, et al. Integrating machine learning algorithms and multiple immunohistochemistry validation to unveil novel diagnostic markers based on costimulatory molecules for predicting immune microenvironment status in triple-negative breast cancer. Front Immunol. 2024;15:1424259.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li YJ, Nuytemans K, La JO, Jiang R, Slifer SH, Sun S, et al. Identification of novel genes for age-at-onset of Alzheimer’s disease by combining quantitative and survival trait analyses. Alzheimers Dement. 2023;19(7):3148–57.

Article  CAS  PubMed  Google Scholar 

Yang Z, Liu L, Zhu Z, Hu Z, Liu B, Gong J, et al. Tumor-associated monocytes reprogram CD8(+) T cells into central memory-like cells with potent antitumor effects. Adv Sci (Weinh). 2024;11(16): e2304501.

Article  PubMed  Google Scholar 

Lee-Ødegård S, Hjorth M, Olsen T, Moen G-H, Daubney E, Evans DM, et al. Serum proteomic profiling of physical activity reveals CD300LG as a novel exerkine with a potential causal link to glucose homeostasis. Elife. 2024. https://doi.org/10.7554/eLife.96535.3.

Article  PubMed  PubMed Central  Google Scholar 

Li Q, Xie D, Yao L, Qiu H, You P, Deng J, et al. Combining autophagy and immune characterizations to predict prognosis and therapeutic response in lung adenocarcinoma. Front Immunol. 2022;13: 944378.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei Q, Jiang X, Miao X, Zhang Y, Chen F, Zhang P. Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns. J Cancer Res Clin Oncol. 2023;149(13):11351–68.

Article  CAS  PubMed  Google Scholar 

Adriaens ME, Lodder EM, Moreno-Moral A, Šilhavý J, Heinig M, Glinge C, et al. Systems genetics approaches in rat identify novel genes and gene networks associated with cardiac conduction. J Am Heart Assoc. 2018;7(21): e009243.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding S, Chen X, Shen K. Single-cell RNA sequencing in breast cancer: understanding tumor heterogeneity and paving roads to individualized therapy. Cancer Commun (Lond). 2020;40(8):329–44.

Article  PubMed  Google Scholar 

So JY, Ohm J, Lipkowitz S, Yang L. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: emerging treatment options. Pharmacol Ther. 2022;237: 108253.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asleh K, Riaz N, Nielsen TO. Heterogeneity of triple negative breast cancer: current advances in subtyping and treatment implications. J Exp Clin Cancer Res. 2022;41(1):265.

Article  PubMed  PubMed Central  Google Scholar 

Yamashita N, Long M, Fushimi A, Yamamoto M, Hata T, Hagiwara M, Bhattacharya A, Qiang H, Wong K-K, Liu S, Kufe D. MUC1-C integrates activation of the IFN-γ pathway with suppression of the tumor immune microenvironment in triple-negative breast cancer. J ImmunoTherapy Cancer. 2021;9(1):e002115. https://doi.org/10.1136/jitc-2020-002115.

Article  Google Scholar 

Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell. 2018;174(5):1293-308.e36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shiao SL, Gouin KH 3rd, Ing N, Ho A, Basho R, Shah A, et al. Single-cell and spatial profiling identify three response trajectories to pembrolizumab and radiation therapy in triple negative breast cancer. Cancer Cell. 2024;42(1):70-84.e8.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple

Comments (0)

No login
gif