Suyama T, Shigematsu T, Takaichi S et al (1999) Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. Int J Syst Bacteriol 49:449–457. https://doi.org/10.1099/00207713-49-2-449
Liu Y, Du J, Pei T et al (2022) Genome-based taxonomic classification of the closest-to-Comamonadaceae group supports a new family Sphaerotilaceae fam. nov. and taxonomic revisions. Syst Appl Microbiol 45:126352. https://doi.org/10.1016/j.syapm.2022.126352
Rapala J, Berg KA, Lyra C et al (2005) Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int J Syst Evol Microbiol 55:1563–1568. https://doi.org/10.1099/ijs.0.63599-0
Xie CH, Yokota A (2005) Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov. comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 55:2419–2425. https://doi.org/10.1099/ijs.0.63733-0
Gomila M, Bowien B, Falsen E et al (2007) Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water. Int J Syst Evol Microbiol 57:2629–2635. https://doi.org/10.1099/ijs.0.65149-0
Pheng S, Lee JJ, Eom MK et al (2017) Paucibacter oligotrophus sp. nov., isolated from fresh water, and emended description of the genus Paucibacter. Int J Syst Evol Microbiol 67:2231–2235. https://doi.org/10.1099/ijsem.0.001931
Fan MC, Nan LJ, Zhu YM et al (2018) Mitsuaria noduli sp. nov., isolated from the root nodules of Robinia pseudoacacia in a lead–zinc mine. Int J Syst Evol Microbiol 68:87–92. https://doi.org/10.1099/ijsem.0.002459
Amakata D, Matsuo Y, Shimono K et al (2005) Mitsuaria chitosanitabida gen. nov., sp. nov., and aerobic, chitosanase-producing member of the ‘Betaproteobacteria’. Int J Syst Evol Microbiol 55:1927–1932. https://doi.org/10.1099/ijs.0.63629-0
Sisinthy S, Gundlapally SR (2020) Mitsuaria chitinivorans sp. nov. a potential candidate for bioremediation: emended description of the genera Mitsuaria. Roseateles and Pelomonas Arch Microbiol 202:1839–1848. https://doi.org/10.1007/s00203-020-01905-z
Gomila M, Pinhassi J, Falsen E et al (2010) Kinneretia asaccharophila gen. nov., sp. nov., isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int J Syst Evol Microbiol 60:809–814. https://doi.org/10.1099/ijs.0.011478-0
Gomila M, Bowien B, Falsen E et al (2008) Description of Roseateles aquatilis sp. nov. and Roseateles terrae sp. nov., in the class Betaproteobacteria, and emended description of the genus Roseateles. Int J Syst Evol Microbiol 58:6–11. https://doi.org/10.1099/ijs.0.65169-0
Park S, Kim I, Chhetri G et al (2023) Roseateles albus sp. Nov., Roseateles koreensis sp. Nov. and Janthinobacterium fluminis sp. Nov., isolated from freshwater at Jucheon River, and emended description of Roseateles aquaticus comb nov. Int J Syst Evol Microbiol 73:006043. https://doi.org/10.1099/ijsem.0.006043
Guliayeva D, Akhremchuk A, Sikolenko M et al (2023) Roseateles amylovorans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 73:006133. https://doi.org/10.1099/ijsem.0.006133
Woo H, Chhetri G, Kim I et al (2024) Roseateles subflavus sp. nov. and Roseateles aquae sp. nov., isolated from artificial pond water and Roseateles violae sp. nov., isolated from a Viola mandshurica root. Int J Syst Evol Microbiol 74:006426. https://doi.org/10.1099/ijsem.0.006426
So Y, Chhetri G, Kim I et al (2024) Roseateles caseinilyticus sp. nov. and Roseateles cellulosilyticus sp. nov., isolated from rice paddy field soil. Antonie Van Leeuwenhoek 117:1–11. https://doi.org/10.1007/s10482-024-01988-4
Woo H, Chhetri G, Kim I et al (2024) Pedobacter rhodius sp. nov. and Pedobacter punctiformis sp. nov., isolated from soil. Antonie Van Leeuwenhoek 117:1–11. https://doi.org/10.1007/s10482-024-01963-z
Yoon SH, Ha SM, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755
Article PubMed PubMed Central Google Scholar
Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped blast and PSI-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389
Article PubMed PubMed Central Google Scholar
Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
Article PubMed PubMed Central Google Scholar
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/bf01734359
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Masatoshi N, Sudhir K (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford, p 333
Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
Wu Y (2009) A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25:190–196. https://doi.org/10.1093/bioinformatics/btn606
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021
Article PubMed PubMed Central Google Scholar
Lee I, Chalita M, Ha SM et al (2017) ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 67:2053–2057. https://doi.org/10.1099/ijsem.0.001872
Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043. https://doi.org/10.1101/gr.186072.114
Article PubMed PubMed Central Google Scholar
Blin K, Shaw S, Augustijn HE et al (2023) antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 51:W46–W50. https://doi.org/10.1093/nar/gkad344
Article PubMed PubMed Central Google Scholar
Li W, O’Neill KR, Haft DH et al (2021) RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 49:D1020–D1028. https://doi.org/10.1093/nar/gkaa1105
Aziz RK, Bartels D, Best A et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:1–15. https://doi.org/10.1186/1471-2164-9-75
Kim D, Park S, Chun J (2021) Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 59:476–480. https://doi.org/10.1007/s12275-021-1154-0
Na SI, Kim YO, Yoon SH et al (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:281–285. https://doi.org/10.1007/s12275-018-8014-6
Sun J, Lu F, Luo Y et al (2023) OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 51:W397–W403. https://doi.org/10.1093/nar/gkad313
Comments (0)