Three Novel Bacterial Species, sp. nov., sp. nov., and sp. nov., Isolated from Various Water-Related Environments

Suyama T, Shigematsu T, Takaichi S et al (1999) Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the Proteobacteria. Int J Syst Bacteriol 49:449–457. https://doi.org/10.1099/00207713-49-2-449

Article  PubMed  Google Scholar 

Liu Y, Du J, Pei T et al (2022) Genome-based taxonomic classification of the closest-to-Comamonadaceae group supports a new family Sphaerotilaceae fam. nov. and taxonomic revisions. Syst Appl Microbiol 45:126352. https://doi.org/10.1016/j.syapm.2022.126352

Article  PubMed  Google Scholar 

Rapala J, Berg KA, Lyra C et al (2005) Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int J Syst Evol Microbiol 55:1563–1568. https://doi.org/10.1099/ijs.0.63599-0

Article  PubMed  Google Scholar 

Xie CH, Yokota A (2005) Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov. comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 55:2419–2425. https://doi.org/10.1099/ijs.0.63733-0

Article  PubMed  Google Scholar 

Gomila M, Bowien B, Falsen E et al (2007) Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water. Int J Syst Evol Microbiol 57:2629–2635. https://doi.org/10.1099/ijs.0.65149-0

Article  PubMed  Google Scholar 

Pheng S, Lee JJ, Eom MK et al (2017) Paucibacter oligotrophus sp. nov., isolated from fresh water, and emended description of the genus Paucibacter. Int J Syst Evol Microbiol 67:2231–2235. https://doi.org/10.1099/ijsem.0.001931

Article  PubMed  Google Scholar 

Fan MC, Nan LJ, Zhu YM et al (2018) Mitsuaria noduli sp. nov., isolated from the root nodules of Robinia pseudoacacia in a lead–zinc mine. Int J Syst Evol Microbiol 68:87–92. https://doi.org/10.1099/ijsem.0.002459

Article  PubMed  Google Scholar 

Amakata D, Matsuo Y, Shimono K et al (2005) Mitsuaria chitosanitabida gen. nov., sp. nov., and aerobic, chitosanase-producing member of the ‘Betaproteobacteria’. Int J Syst Evol Microbiol 55:1927–1932. https://doi.org/10.1099/ijs.0.63629-0

Article  PubMed  Google Scholar 

Sisinthy S, Gundlapally SR (2020) Mitsuaria chitinivorans sp. nov. a potential candidate for bioremediation: emended description of the genera Mitsuaria. Roseateles and Pelomonas Arch Microbiol 202:1839–1848. https://doi.org/10.1007/s00203-020-01905-z

Article  PubMed  Google Scholar 

Gomila M, Pinhassi J, Falsen E et al (2010) Kinneretia asaccharophila gen. nov., sp. nov., isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int J Syst Evol Microbiol 60:809–814. https://doi.org/10.1099/ijs.0.011478-0

Article  PubMed  Google Scholar 

Gomila M, Bowien B, Falsen E et al (2008) Description of Roseateles aquatilis sp. nov. and Roseateles terrae sp. nov., in the class Betaproteobacteria, and emended description of the genus Roseateles. Int J Syst Evol Microbiol 58:6–11. https://doi.org/10.1099/ijs.0.65169-0

Article  PubMed  Google Scholar 

Park S, Kim I, Chhetri G et al (2023) Roseateles albus sp. Nov., Roseateles koreensis sp. Nov. and Janthinobacterium fluminis sp. Nov., isolated from freshwater at Jucheon River, and emended description of Roseateles aquaticus comb nov. Int J Syst Evol Microbiol 73:006043. https://doi.org/10.1099/ijsem.0.006043

Article  Google Scholar 

Guliayeva D, Akhremchuk A, Sikolenko M et al (2023) Roseateles amylovorans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 73:006133. https://doi.org/10.1099/ijsem.0.006133

Article  Google Scholar 

Woo H, Chhetri G, Kim I et al (2024) Roseateles subflavus sp. nov. and Roseateles aquae sp. nov., isolated from artificial pond water and Roseateles violae sp. nov., isolated from a Viola mandshurica root. Int J Syst Evol Microbiol 74:006426. https://doi.org/10.1099/ijsem.0.006426

Article  Google Scholar 

So Y, Chhetri G, Kim I et al (2024) Roseateles caseinilyticus sp. nov. and Roseateles cellulosilyticus sp. nov., isolated from rice paddy field soil. Antonie Van Leeuwenhoek 117:1–11. https://doi.org/10.1007/s10482-024-01988-4

Article  Google Scholar 

Woo H, Chhetri G, Kim I et al (2024) Pedobacter rhodius sp. nov. and Pedobacter punctiformis sp. nov., isolated from soil. Antonie Van Leeuwenhoek 117:1–11. https://doi.org/10.1007/s10482-024-01963-z

Article  Google Scholar 

Yoon SH, Ha SM, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

Article  PubMed  PubMed Central  Google Scholar 

Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped blast and PSI-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

Article  PubMed  PubMed Central  Google Scholar 

Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Article  PubMed  PubMed Central  Google Scholar 

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/bf01734359

Article  PubMed  Google Scholar 

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Article  PubMed  Google Scholar 

Masatoshi N, Sudhir K (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford, p 333

Google Scholar 

Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Article  PubMed  Google Scholar 

Wu Y (2009) A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25:190–196. https://doi.org/10.1093/bioinformatics/btn606

Article  PubMed  Google Scholar 

Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

Article  PubMed  PubMed Central  Google Scholar 

Lee I, Chalita M, Ha SM et al (2017) ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 67:2053–2057. https://doi.org/10.1099/ijsem.0.001872

Article  PubMed  Google Scholar 

Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043. https://doi.org/10.1101/gr.186072.114

Article  PubMed  PubMed Central  Google Scholar 

Blin K, Shaw S, Augustijn HE et al (2023) antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 51:W46–W50. https://doi.org/10.1093/nar/gkad344

Article  PubMed  PubMed Central  Google Scholar 

Li W, O’Neill KR, Haft DH et al (2021) RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 49:D1020–D1028. https://doi.org/10.1093/nar/gkaa1105

Article  PubMed  Google Scholar 

Aziz RK, Bartels D, Best A et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:1–15. https://doi.org/10.1186/1471-2164-9-75

Article  Google Scholar 

Kim D, Park S, Chun J (2021) Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 59:476–480. https://doi.org/10.1007/s12275-021-1154-0

Article  PubMed  Google Scholar 

Na SI, Kim YO, Yoon SH et al (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:281–285. https://doi.org/10.1007/s12275-018-8014-6

Article  Google Scholar 

Sun J, Lu F, Luo Y et al (2023) OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 51:W397–W403. https://doi.org/10.1093/nar/gkad313

Comments (0)

No login
gif