sp. Strain Fo03, a Phosphate Solubilizing Bacterial Strain, Promotes Potato Growth and Decrease Inorganic Fertilizer

FAO Food and Agriculture Organization Corporate Statistical Database. Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize. Accessed 6 Mar 2023

Devaux A, Goffart JP, Petsakos A, Kromann P, Gatto M, Okello J et al (2020) Global food security, contributions from sustainable potato agri-food systems. In: Campos H, Ortíz O (eds) The potato crop: its agricultural, nutritional and social contribution to humankind. Springer Nature, Cham, pp 3–35. https://doi.org/10.1007/978-3-030-28683-5

Chapter  Google Scholar 

Hopkins BG, Horneck DA, MacGuidwin AE (2014) Improving phosphorus use efficiency through potato rhizosphere modification and extension. Am J Potato Res 91:161–174. https://doi.org/10.1007/s12230-014-9370-3

Article  CAS  Google Scholar 

Zhao D, Oosterhuis D, Bednarz C (2001) Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103–109. https://doi.org/10.1023/A:1012404204910

Article  CAS  Google Scholar 

Rosen CJ, Kelling KA, Stark JC et al (2014) Optimizing phosphorus fertilizer management in potato production. Am J Potato Res 91:145–160. https://doi.org/10.1007/s12230-014-9371-2

Article  CAS  Google Scholar 

Stark JC, Love SL, Knowles R (2020) Tuber quality. In: Stark JC, Thornton M, Nolte P (eds) Potato production systems. Springer, Cham, p 635

Chapter  Google Scholar 

Mokrani K, Hamdi K, Tarchoun N (2018) Potato (Solanum tuberosum L.) response to nitrogen, phosphorus and potassium fertilizer rates. Commun Soil Sci Plant Anal 49:1314–1330. https://doi.org/10.1080/00103624.2018.1457159

Article  CAS  Google Scholar 

Krein DDC, Rosseto M, Cemin F, Massuda LA, Dettmer A (2023) Recent trends and technologies for reduced environmental impacts of fertilizers: a review. Int J Environ Sci Technol 20:12903–12918. https://doi.org/10.1007/s13762-023-04929-2

Article  CAS  Google Scholar 

FAO Food and Agriculture Organization. World Food and Agriculture. Statistical Yearbook Rome (2021). https://www.fao.org/documents/card/en?details=cc2211en. Accessed 6 Mar 2023

Nawara S, Van Dael T, Merckx R, Amery F, Elsen A, Odeurs W et al (2017) A comparison of soil tests for available phosphorus in long-term field experiments in Europe. Eur J Soil Sci 68:873–885. https://doi.org/10.1111/ejss.12486

Article  CAS  Google Scholar 

Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:1–14. https://doi.org/10.1186/2193-1801-2-587

Article  CAS  Google Scholar 

Dardanelli MS et al (2010) Benefits of plant growth-promoting rhizobacteria and rhizobia in agriculture. In: Maheshwari D (ed) Plant growth and health promoting bacteria. Microbiology monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_1

Chapter  Google Scholar 

Kaur G, Reddy MS (2014) Influence of P-solubilizing bacteria on crop yield and soil fertility at multilocational sites. Eur J Soil Biol 61:35–40. https://doi.org/10.1016/j.ejsobi.2013.12.009

Article  CAS  Google Scholar 

Khan A, Ali L, Chaudhary HJ, Munis MFH, Bano A, Masood S (2016) Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity. Sci Hortic 200:178–185. https://doi.org/10.1016/j.scienta.2016.01.024

Article  CAS  Google Scholar 

Khan A, Zhao XQ, Javed MT, Khan KS, Bano A, Shen RF, Masood S (2016) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Exp Bot 124:120–129. https://doi.org/10.1016/j.envexpbot.2015.12.011

Article  CAS  Google Scholar 

Masood S, Zhao XQ, Shen RF (2019) Bacillus pumilus increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilizer. AoB Plants 11:36. https://doi.org/10.1093/aobpla/plz036

Article  CAS  Google Scholar 

Kang Y, Shen M, Wang H, Zhao Q (2013) A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J Gen Appl Microbiol 59:267–277. https://doi.org/10.2323/jgam.59.267

Article  PubMed  CAS  Google Scholar 

Win KT, Okazaki K, Ohkama-Ohtsu N, Yokoyama T, Ohwaki Y (2020) Short-term effects of biochar and Bacillus pumilus TUAT-1 on the growth of forage rice and its associated soil microbial community and soil properties. Biol Fert Soils 56:481–497. https://doi.org/10.1007/s00374-020-01448-x

Article  CAS  Google Scholar 

Yañez-Ocampo G, Mora-Herrera ME, Wong-Villarreal A, De La Paz-Osorio DM, De La Portilla-Lopez N, Lugo J et al (2020) Isolated phosphate-solubilizing soil bacteria promotes growth of Solanum tuberosum L. Pol J Microbiol 69:357–365. https://doi.org/10.33073/pjm-2020-039

Article  PubMed  PubMed Central  Google Scholar 

Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya 17(362–370):1948

Google Scholar 

McDevitt S (2009) Methyl red and Voges–Proskauer test protocols, vol 8. American Society for Microbiology, Washington

Google Scholar 

Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Ibañez ND, López-Morales CA, Pérez NO, Flores-Ortiz LF, Medina-Rivero E (2015) Validation of three viable-cell counting methods: manual, semi-automated, and automated. Biotechnol Rep 7:9–16. https://doi.org/10.1016/j.btre.2015.04.004

Article  Google Scholar 

Mora-Herrera ME, López-Delgado H, Castillo-Morales A, Foyer CH (2005) Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Plant 125:430–440. https://doi.org/10.1111/j.1399-3054.2005.00572.x

Article  CAS  Google Scholar 

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

Article  CAS  Google Scholar 

Mohapatra PP, Batra VK (2017) Tissue culture of potato (Solanum tuberosum L.): a review. Int J Curr Microbiol Appl Sci 6:489–495. https://doi.org/10.20546/ijcmas.2017.604.058

Article  CAS  Google Scholar 

SEMARNAT, Secretaría del Medio Ambiente y Recursos Naturales. Norma oficial mexicana NOM-021-RECNAT-2000. http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf. Accessed 6 Mar 2023

SMN-CNA, Servicio Meteorológico Nacional-Comisión Nacional del Agua. Observatorio Meteorológico 76675. Centro de Previsión Meteorológica Toluca. https://smn.conagua.gob.mx/es/. Accessed 1 Feb 2021

INEGI, Instituto Nacional de Estadística, Geografía e Informática. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Metepec, México. Clave Geoestadística 15054. https://docplayer.es/99001648-Prontuario-de-informacion-geografica-municipal-de-los-estados-unidos-mexicanos-metepec-mexico-clave-geoestadistica-15054.html. Accessed 1 Feb 2021

Degan F, Fournier A, Gierczak F et al (2024) Adapting the high-throughput phenotyping tool ALPHI® to potatoes: first results and lessons. Potato Res. https://doi.org/10.1007/s11540-024-09729-w

Article  Google Scholar 

Flores-Gutiérrez FX, Flores-López R, Mora-Herrera ME, Franco-Mora O (2018) Response of the Mexican clone of potato 99-39 to potassium in hydroponics and greenhouse. Rev Mex Cienc 9:1123–1135. https://doi.org/10.29312/remexca.v9i6.1578

Article  Google Scholar 

Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9

Article  PubMed  CAS  Google Scholar 

Masood S, Zhao XQ, Shen RF (2020) Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilizer. Sci Hortic 272:109581. https://doi.org/10.1016/j.scienta.2020.109581

Article  CAS  Google Scholar 

Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487. https://doi.org/10.1016/j.soilbio.2005.09.019

Article  CAS  Google Scholar 

Saeid A, Prochownik E, Dobrowolska-Iwanek J (2018) Phosphorus solubilization by Bacillus species. Molecules 23:2897. https://doi.org/10.3390/molecules23112897

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chawngthu L, Hnamte R, Lalfakzuala R (2020) Isolation and characterization of rhizospheric phosphate solubilizing bacteria from wetland paddy field of Mizoram, India. Geomicrobiol J 37:366–375. https://doi.org/10.1080/01490451.2019.1709108

Article  CAS  Google Scholar 

Scervino JM, Mesa MP, Della Mónica I et al (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755–763. https://doi.org/10.1007/s00374-010-0482-8

Article  CAS  Google Scholar 

García JAL, Probanza A, Ramos B, Palomino M, Mañero FJG (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24:169–176. https://doi.org/10.1051/agro:2004020

Article 

Comments (0)

No login
gif