FAO Food and Agriculture Organization Corporate Statistical Database. Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize. Accessed 6 Mar 2023
Devaux A, Goffart JP, Petsakos A, Kromann P, Gatto M, Okello J et al (2020) Global food security, contributions from sustainable potato agri-food systems. In: Campos H, Ortíz O (eds) The potato crop: its agricultural, nutritional and social contribution to humankind. Springer Nature, Cham, pp 3–35. https://doi.org/10.1007/978-3-030-28683-5
Hopkins BG, Horneck DA, MacGuidwin AE (2014) Improving phosphorus use efficiency through potato rhizosphere modification and extension. Am J Potato Res 91:161–174. https://doi.org/10.1007/s12230-014-9370-3
Zhao D, Oosterhuis D, Bednarz C (2001) Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103–109. https://doi.org/10.1023/A:1012404204910
Rosen CJ, Kelling KA, Stark JC et al (2014) Optimizing phosphorus fertilizer management in potato production. Am J Potato Res 91:145–160. https://doi.org/10.1007/s12230-014-9371-2
Stark JC, Love SL, Knowles R (2020) Tuber quality. In: Stark JC, Thornton M, Nolte P (eds) Potato production systems. Springer, Cham, p 635
Mokrani K, Hamdi K, Tarchoun N (2018) Potato (Solanum tuberosum L.) response to nitrogen, phosphorus and potassium fertilizer rates. Commun Soil Sci Plant Anal 49:1314–1330. https://doi.org/10.1080/00103624.2018.1457159
Krein DDC, Rosseto M, Cemin F, Massuda LA, Dettmer A (2023) Recent trends and technologies for reduced environmental impacts of fertilizers: a review. Int J Environ Sci Technol 20:12903–12918. https://doi.org/10.1007/s13762-023-04929-2
FAO Food and Agriculture Organization. World Food and Agriculture. Statistical Yearbook Rome (2021). https://www.fao.org/documents/card/en?details=cc2211en. Accessed 6 Mar 2023
Nawara S, Van Dael T, Merckx R, Amery F, Elsen A, Odeurs W et al (2017) A comparison of soil tests for available phosphorus in long-term field experiments in Europe. Eur J Soil Sci 68:873–885. https://doi.org/10.1111/ejss.12486
Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:1–14. https://doi.org/10.1186/2193-1801-2-587
Dardanelli MS et al (2010) Benefits of plant growth-promoting rhizobacteria and rhizobia in agriculture. In: Maheshwari D (ed) Plant growth and health promoting bacteria. Microbiology monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_1
Kaur G, Reddy MS (2014) Influence of P-solubilizing bacteria on crop yield and soil fertility at multilocational sites. Eur J Soil Biol 61:35–40. https://doi.org/10.1016/j.ejsobi.2013.12.009
Khan A, Ali L, Chaudhary HJ, Munis MFH, Bano A, Masood S (2016) Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity. Sci Hortic 200:178–185. https://doi.org/10.1016/j.scienta.2016.01.024
Khan A, Zhao XQ, Javed MT, Khan KS, Bano A, Shen RF, Masood S (2016) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Exp Bot 124:120–129. https://doi.org/10.1016/j.envexpbot.2015.12.011
Masood S, Zhao XQ, Shen RF (2019) Bacillus pumilus increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilizer. AoB Plants 11:36. https://doi.org/10.1093/aobpla/plz036
Kang Y, Shen M, Wang H, Zhao Q (2013) A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J Gen Appl Microbiol 59:267–277. https://doi.org/10.2323/jgam.59.267
Article PubMed CAS Google Scholar
Win KT, Okazaki K, Ohkama-Ohtsu N, Yokoyama T, Ohwaki Y (2020) Short-term effects of biochar and Bacillus pumilus TUAT-1 on the growth of forage rice and its associated soil microbial community and soil properties. Biol Fert Soils 56:481–497. https://doi.org/10.1007/s00374-020-01448-x
Yañez-Ocampo G, Mora-Herrera ME, Wong-Villarreal A, De La Paz-Osorio DM, De La Portilla-Lopez N, Lugo J et al (2020) Isolated phosphate-solubilizing soil bacteria promotes growth of Solanum tuberosum L. Pol J Microbiol 69:357–365. https://doi.org/10.33073/pjm-2020-039
Article PubMed PubMed Central Google Scholar
Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya 17(362–370):1948
McDevitt S (2009) Methyl red and Voges–Proskauer test protocols, vol 8. American Society for Microbiology, Washington
Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Ibañez ND, López-Morales CA, Pérez NO, Flores-Ortiz LF, Medina-Rivero E (2015) Validation of three viable-cell counting methods: manual, semi-automated, and automated. Biotechnol Rep 7:9–16. https://doi.org/10.1016/j.btre.2015.04.004
Mora-Herrera ME, López-Delgado H, Castillo-Morales A, Foyer CH (2005) Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Plant 125:430–440. https://doi.org/10.1111/j.1399-3054.2005.00572.x
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497
Mohapatra PP, Batra VK (2017) Tissue culture of potato (Solanum tuberosum L.): a review. Int J Curr Microbiol Appl Sci 6:489–495. https://doi.org/10.20546/ijcmas.2017.604.058
SEMARNAT, Secretaría del Medio Ambiente y Recursos Naturales. Norma oficial mexicana NOM-021-RECNAT-2000. http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf. Accessed 6 Mar 2023
SMN-CNA, Servicio Meteorológico Nacional-Comisión Nacional del Agua. Observatorio Meteorológico 76675. Centro de Previsión Meteorológica Toluca. https://smn.conagua.gob.mx/es/. Accessed 1 Feb 2021
INEGI, Instituto Nacional de Estadística, Geografía e Informática. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Metepec, México. Clave Geoestadística 15054. https://docplayer.es/99001648-Prontuario-de-informacion-geografica-municipal-de-los-estados-unidos-mexicanos-metepec-mexico-clave-geoestadistica-15054.html. Accessed 1 Feb 2021
Degan F, Fournier A, Gierczak F et al (2024) Adapting the high-throughput phenotyping tool ALPHI® to potatoes: first results and lessons. Potato Res. https://doi.org/10.1007/s11540-024-09729-w
Flores-Gutiérrez FX, Flores-López R, Mora-Herrera ME, Franco-Mora O (2018) Response of the Mexican clone of potato 99-39 to potassium in hydroponics and greenhouse. Rev Mex Cienc 9:1123–1135. https://doi.org/10.29312/remexca.v9i6.1578
Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9
Article PubMed CAS Google Scholar
Masood S, Zhao XQ, Shen RF (2020) Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilizer. Sci Hortic 272:109581. https://doi.org/10.1016/j.scienta.2020.109581
Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487. https://doi.org/10.1016/j.soilbio.2005.09.019
Saeid A, Prochownik E, Dobrowolska-Iwanek J (2018) Phosphorus solubilization by Bacillus species. Molecules 23:2897. https://doi.org/10.3390/molecules23112897
Article PubMed PubMed Central CAS Google Scholar
Chawngthu L, Hnamte R, Lalfakzuala R (2020) Isolation and characterization of rhizospheric phosphate solubilizing bacteria from wetland paddy field of Mizoram, India. Geomicrobiol J 37:366–375. https://doi.org/10.1080/01490451.2019.1709108
Scervino JM, Mesa MP, Della Mónica I et al (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755–763. https://doi.org/10.1007/s00374-010-0482-8
García JAL, Probanza A, Ramos B, Palomino M, Mañero FJG (2004) Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie 24:169–176. https://doi.org/10.1051/agro:2004020
Comments (0)