Liu J, He J, Xue R, Xu B, Qian X, Xin F et al (2021) Biodegradation and up-cycling of polyurethanes: progress, challenges, and prospects. Biotechnol Adv 48:107730. https://doi.org/10.1016/j.biotechadv.2021.107730
Deng Y, Dewil R, Appels L, Ansart R, Baeyens J, Kang Q (2020) Reviewing the thermo-chemical recycling of waste polyurethane foam. J Environ Manage 278:111527. https://doi.org/10.1016/j.jenvman.2020.111527
Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B (2019) Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 90:211–268. https://doi.org/10.1016/j.progpolymsci.2018.12.003
Morales-Cerrada R, Tavernier R, Caillol S (2021) Fully bio-based thermosetting polyurethanes from bio-based polyols and isocyanates. Polymers 13(8):1255. https://doi.org/10.3390/polym13081255
Article PubMed PubMed Central Google Scholar
Pham CT, Nguyen BT, Nguyen MT, Nguyen TH, Hoang CN, Nguyen NN et al (2021) The advancement of bis (2-hydroxyethyl) terephthalate recovered from post-consumer poly (ethylene terephthalate) bottles compared to commercial polyol for preparation of high-performance polyurethane. J Ind Eng Chem 93:196–209. https://doi.org/10.1016/j.jiec.2020.09.024
Danso D, Chow J, Streit WR (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol 85(19):e01095–e01119. https://doi.org/10.1128/AEM.01095-19
Article PubMed PubMed Central Google Scholar
Donchenko A, Aubin S, Gagné S, Spence M, Breau L, Lesage J (2020) Development of a method for quantification of toluene diisocyanate and methylenediphenyl diisocyanate migration from polyurethane foam sample surface to artificial sweat by HPLC-UV-MS. J Chromatogr B 1142:122027. https://doi.org/10.1016/j.jchromb.2020.122027
Kemona A, Piotrowska M (2020) Polyurethane recycling and disposal: methods and prospects. Polymers 12(8):1752. https://doi.org/10.3390/polym12081752
Article PubMed PubMed Central Google Scholar
Furtwengler P, Avérous L (2018) Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 9(32):4258–4287. https://doi.org/10.1039/C8PY00827B
Das A, Mahanwar P (2020) A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res 3(3):93–101. https://doi.org/10.1016/j.aiepr.2020.07.002
Gui Z, Liu G, Liu X, Cai R, Liu R, Sun C (2023) A deep-sea bacterium is capable of degrading polyurethane. Microbiol Spectrum 11:e00073-e123. https://doi.org/10.1128/spectrum.00073-23
Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709. https://doi.org/10.3389/fmicb.2020.580709
Article PubMed PubMed Central Google Scholar
Hammami K, Souissi Y, Cherif A, Neifar M (2023) Sustainable bioconversion of synthetic plastic wastes to polyhydroxyalkanoate (PHA) bioplastics: recent advances and challenges. MOJ Appl Bionics Biomech MOJABB 7(1):48–62. https://doi.org/10.15406/mojabb.2023.07.00175
Peng YH, Shih YH, Lai YC, Liu YZ, Liu YT, Lin NC (2014) Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environ Sci Pollut Res 21(16):9529–9537. https://doi.org/10.1007/s11356-014-2647-8
Peng RT, Xia ML, Ru JK, Huo YX, Yang Y (2018) Microbial degradation of polyurethane plastics. Sheng wu gong cheng xue bao 34(9):1398–1409. https://doi.org/10.13345/j.cjb.170532
Jin X, Dong J, Guo X, Ding M, Bao R, Luo Y (2022) Current advances in polyurethane biodegradation. Polym Int 71(12):1384–1392. https://doi.org/10.1002/pi.6360
Nadeau LJ, Barlow DE, Hung CS, Biffinger JC, Crouch AL, Hollomon JM et al (2021) Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases. Int Biodeterior Biodegradation 156:105121. https://doi.org/10.1016/j.ibiod.2020.105121
Branson Y, Söltl S, Buchmann C, Wei R, Schaffert L, Badenhorst CP et al (2023) Urethanases for the enzymatic hydrolysis of low molecular weight carbamates and the recycling of polyurethanes. Angew Chem Int Ed 62(9):e202216220. https://doi.org/10.1002/anie.202216220
do Canto VP, Thompson CE, Netz PA (2021) Computational studies of polyurethanases from Pseudomonas. J Mol Model 27(2):46. https://doi.org/10.1007/s00894-021-04671-x
Johnston B, Adamus G, Ekere AI, Kowalczuk M, Tchuenbou-Magaia F, Radecka I (2022) Bioconversion of plastic waste based on mass full carbon backbone polymeric materials to value-added polyhydroxyalkanoates (PHAs). Bioengineering 9(9):432. https://doi.org/10.3390/bioengineering9090432
Article PubMed PubMed Central Google Scholar
Skleničková K, Abbrent S, Halecký M, Kočí V, Beneš H (2022) Biodegradability and ecotoxicity of polyurethane foams: a review. Crit Rev Environ Sci Technol 52(2):157–202. https://doi.org/10.1080/10643389.2020.1818496
Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM (2011) The thermodynamic ladder in geomicrobiology. Am J Sci 311(3):183. https://doi.org/10.2475/03.2011.01
Jin Q, Bethke CM (2003) A new rate law describing microbial respiration. Appl Environ Microbiol 69(4):2340–2348. https://doi.org/10.1128/AEM.69.4.2340-2348.2003
Article PubMed PubMed Central Google Scholar
Shang H (2023) A generic hierarchical model of organic matter degradation and preservation in aquatic systems. Commun Earth Environ 4(1):16. https://doi.org/10.1038/s43247-022-00667-4
Shah Z, Gulzar M, Hasan F, Shah AA (2016) Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas and Bacillus species isolated from soil. Polym Degrad Stab 134:349–356. https://doi.org/10.1016/j.polymdegradstab.2016.11.003
Ekere I, Johnston B, Tchuenbou-Magaia F, Townrow D, Wojciechowski S, Marek A et al (2022) Bioconversion process of polyethylene from waste tetra pak® packaging to polyhydroxyalkanoates. Polymers 14(14):2840. https://doi.org/10.3390/polym14142840
Article PubMed PubMed Central Google Scholar
Johnston B, Radecka I, Chiellini E, Barsi D, Ilieva VI, Sikorska W (2019) Mass spectrometry reveals molecular structure of polyhydroxyalkanoates attained by bioconversion of oxidized polypropylene waste fragments. Polymers (Basel) 11(10):1580. https://doi.org/10.3390/polym11101580
Mihreteab M, Stubblefield BA, Gilbert ES (2019) Microbial bioconversion of thermally depolymerized polypropylene by Yarrowia lipolytica for fatty acid production. Appl Microbiol Biotechnol 103(18):7729–7740. https://doi.org/10.1007/s00253-019-09999-2
Shah AA, Hasan F, Akhter JI, Hameed A, Ahmed S (2008) Degradation of polyurethane by novel bacterial consortium isolated from soil. Ann Microbiol 58:381–386. https://doi.org/10.1007/BF03175532
Shah Z, Krumholz L, Aktas DF, Hasan F, Khattak M, Shah AA (2013) Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation 24(6):865–877. https://doi.org/10.1007/s10532-013-9634-5
Westlie AH, Quinn EC, Parker CR, Chen EYX (2022) Synthetic biodegradable polyhydroxyalkanoates (PHAs): recent advances and future challenges. Prog Polym Sci 134:101608. https://doi.org/10.1016/j.progpolymsci.2022.101608
Wilkes RA, Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. J Appl Microbiol 123(3):582–593. https://doi.org/10.1111/jam.13472
Hammami K, Souissi Y, Souii A, Ouertani A, El-Hidri D, Jabberi M et al (2022) Extremophilic bacterium Halomonas desertis G11 as a cell factory for poly-3-hydroxybutyrate-co-3-hydroxyvalerate copolymer’s production. Front Bioeng Biotechnol 10:878843. https://doi.org/10.3389/fbioe.2022.878843
Comments (0)