Kallmeyer J, Pockalny R, Adhikari RR et al (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109:16213–16216. https://doi.org/10.1073/pnas.1203849109
Article PubMed PubMed Central Google Scholar
Petro C, Starnawski P, Schramm A, Kjeldsen KU (2017) Microbial community assembly in marine sediments. Aquat Microb Ecol 79:177–195. https://doi.org/10.3354/ame01826
Wang W, Tao J, Yu K et al (2021) Vertical stratification of dissolved organic matter linked to distinct microbial communities in subtropic estuarine sediments. Front Microbiol 12:697860. https://doi.org/10.3389/fmicb.2021.697860
Article PubMed PubMed Central Google Scholar
Judd A, Hovland M (2007) Seabed fluid flow: the impact on geology, biology, and the marine environment. Cambridge University Press, Cambridge
Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626. https://doi.org/10.1038/35036572
Kravchishina MD, Lisitsyn AP, Klyuvitkin AA et al (2018) Suspended particulate matter as a main source and proxy of the sedimentation processes. Handbook of Environmental Chemistry. Springer, Berlin, pp 13–48
Lisitzyn AP, Kravchishina MD, Kopelevich OV et al (2013) Spatial and temporal variability in suspended particulate matter concentration within the active layer of the White Sea. Dokl Earth Sci 453:1228–1233. https://doi.org/10.1134/S1028334X13120052
Rozanov AG, Volkov II (2009) Bottom sediments of Kandalaksha Bay in the White Sea: the phenomenon of Mn. Geochem Int 47:1004–1020. https://doi.org/10.1134/S001670290910005X
Gordeev V, Martin J, Sidorov I, Sidorova M (1996) A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am J Sci 296:664–691
Politova NV, Klyuvitkin AA, Novigatskii AN et al (2016) Early diagenesis in recent bottom sediments of the Dvina Bay (White Sea). Oceanology 56:702–713. https://doi.org/10.1134/S0001437016050106
Peresypkin VI, Lukashin V, Isaeva AB, Prego R (2004) Lignin and chemical elements in the sediments of Kandalaksha Bay (White Sea). Oceanology 44:698–709
Badmadashiev DV, Stroeva AR, Klyukina AA et al (2023) Phylogenetic diversity of prokaryotic communities of the upper sediment layers of the Kandalaksha Bay, White Sea. Microbiology 92:807–818. https://doi.org/10.1134/S002626172360204X
Savvichev AS, Rusanov II, Zakharova EE et al (2008) Microbial processes of the carbon and sulfur cycles in the White Sea. Microbiology 77:734–750. https://doi.org/10.1134/S002626170806012X
Badmadashiev DV, Stroeva AR, Klyukina AA et al (2023) Stratification of prokaryotic communities in the White Sea bottom sediments. Microbiology 92:S83–S87. https://doi.org/10.1134/S002626172360369X
Espitalie J (1993) Rock-eval pyrolysis. Applied petroleum geochemistry. Technip, Paris, pp 237–261
Gohl DM, Vangay P, Garbe J et al (2016) Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol 34:942–949. https://doi.org/10.1038/nbt.3601
Hugerth LW, Wefer HA, Lundin S et al (2014) DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol 80:5116–5123. https://doi.org/10.1128/AEM.01403-14
Article PubMed PubMed Central Google Scholar
Merkel AY, Tarnovetskii IY, Podosokorskaya OA, Toshchakov SV (2019) Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities. Microbiology 88:671–680. https://doi.org/10.1134/S0026261719060110
Fadrosh DW, Ma B, Gajer P et al (2014) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2:6. https://doi.org/10.1186/2049-2618-2-6
Article PubMed PubMed Central Google Scholar
Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
Article PubMed PubMed Central Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869
Article PubMed PubMed Central Google Scholar
Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. https://doi.org/10.1145/584091.584093
Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58:531–539. https://doi.org/10.1111/j.0006-341X.2002.00531.x
Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005
Article PubMed PubMed Central Google Scholar
Quast C, Pruesse E, Yilmaz P et al (2012) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219
Article PubMed PubMed Central Google Scholar
Mußmann M, Pjevac P, Krüger K, Dyksma S (2017) Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J 11:1276–1281. https://doi.org/10.1038/ismej.2016.185
Article PubMed PubMed Central Google Scholar
Baker BJ, Lazar CS, Teske AP, Dick GJ (2015) Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3:14. https://doi.org/10.1186/s40168-015-0077-6
Article PubMed PubMed Central Google Scholar
Garcia-Valdes E, Cozar E, Rotger R et al (1988) New naphthalene-degrading marine Pseudomonas strains. Appl Environ Microbiol 54:2478–2485. https://doi.org/10.1128/aem.54.10.2478-2485.1988
Article PubMed PubMed Central Google Scholar
Petro C, Jochum LM, Schreiber L et al (2019) Single-cell amplified genomes of two uncultivated members of the deltaproteobacterial SEEP-SRB1 clade, isolated from marine sediment. Mar Genomics 46:66–69. https://doi.org/10.1016/j.margen.2019.01.004
Chen SC, Musat N, Lechtenfeld OJ et al (2019) Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568:108–111. https://doi.org/10.1038/s41586-019-1063-0
Jantharadej K, Limpiyakorn T, Kongprajug A et al (2021) Microbial community compositions and sulfate-reducing bacterial profiles in malodorous urban canal sediments. Arch Microbiol 203:1981–1993. https://doi.org/10.1007/s00203-020-02157-7
Robador A, Müller AL, Sawicka JE et al (2016) Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments. ISME J 10:796–809. https://doi.org/10.1038/ismej.2015.157
Suzuki D, Li Z, Cui X et al (2014) Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int J Syst Evol Microbiol 64:3081–3086. https://doi.org/10.1099/ijs.0.064360-0
Liu JF, Zhang K, Liang B et al (2019) Key players in the methanogenic biodegradation of n-hexadecane identified by DNA-stable isotope probing. Int Biodeterior Biodegradation 143:104723. https://doi.org/10.1016/j.ibiod.2019.05.026
Blazejak A, Schippers A (2010) High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol 72:198–207. https://doi.org/10.1111/j.1574-6941.2010.00838.x
Comments (0)