Plant Growth-Promoting sp. TR47 Ameliorates Pepper ( L. var. Mill) Growth and Tolerance to Salt Stress

Lozada DN, Bosland PW, Barchenger DW, Haghshenas-Jaryani M, Sanogo S, Walker S (2022) Chile pepper (Capsicum) breeding and improvement in the “multi-omics” era. Front Plant Sci 13:879182. https://doi.org/10.3389/fpls.2022.879182

Article  PubMed  PubMed Central  Google Scholar 

Bedjaoui H, Boulelouah N, Mehaoua MS, Baississe S (2022) Exploring agro-morphological diversity of Algerian hot pepper (Capsicum annuum L.) accessions using multivariate statistics. Emir J Food Agric 34(10):836–849. https://doi.org/10.9755/ejfa.2022.v34.i10.2939

Article  Google Scholar 

Kazerooni EA, Maharachchikumbura SS, Adhikari A, Al-Sadi AM, Kang S, Kim L, Lee I (2021) Rhizospheric Bacillus amyloliquefaciens protects Capsicum annuum cv. Geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes. Front Plant Sci 12:669693. https://doi.org/10.3389/fpls.2021.669693

Article  PubMed  PubMed Central  Google Scholar 

Bakelli A, Amrani S, Nacer A, Bouri M, Şahin F (2022) Klebsiella sp. S6; a halotolerant rhizosphere bacterium of Phragmites communis L. with potential plant-growth promotion of pepper. Analele Univ din Oradea Fasc Biol 29(1):92–100

Google Scholar 

Chieb M, Gachomo EW (2023) The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biol 23:407. https://doi.org/10.1186/s12870-023-04403-8

Article  PubMed  PubMed Central  Google Scholar 

Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Env 743:140682. https://doi.org/10.1016/j.scitotenv.2020.140682

Article  CAS  Google Scholar 

Dif G, Belaouni HA, Yekkour A, Goudjal Y, Djemouai N, Peňázová E, Čechová J, Berraf-Tebbal A, Eichmeier A, Zitouni A (2022) Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress: from selective isolation to genomic analysis of potential determinants. World J Microbiol Biotechnol 38(1):16. https://doi.org/10.1007/s11274-021-03203-2

Article  CAS  Google Scholar 

Leontidou K, Genitsaris S, Papadopoulou A, Kamou N, Bosmali I, Matsi T, Madesis P, Vokou D, Karamanoli K, Mellidou I (2020) Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: genomic characterisation and exploration of phyto-beneficial traits. Sci Rep 10(1):14857. https://doi.org/10.1038/s41598-020-71652-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Prakash R, Subramani R, Krodi A, Berde CV, Chandrasekhar T, Prathyusha AMVN, Kariali E, Bramhachari PV (2022) Rhizobacteriome: plant growth-promoting traits and its functional mechanism in plant growth, development, and defenses. In: Veera Bramhachari P (ed) Understanding the microbiome interactions in agriculture and the environment. Springer, Singapore. https://doi.org/10.1007/978-981-19-3696-8_16

Chapter  Google Scholar 

Bibi A, Bibi S, Al-Ghouti MA, Abu-Dieyeh MH (2023) Isolation and evaluation of Qatari soil rhizobacteria for antagonistic potential against phytopathogens and growth promotion in tomato plants. Sci Rep 13(1):22050. https://doi.org/10.1038/s41598-023-49304-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sabrine S, Drias A, Nemer Z, Taibi Y (2024) Degradation assessment of the M’Zab Valley oases in Algeria. Pap Appl Geogr. https://doi.org/10.1080/23754931.2024.2405932

Article  Google Scholar 

Djemouai N, Meklat A, Gaceb-Terrak R, OuladHadjYoucef K, Nacer A, Mokrane S, Bouras N, Verheecke-Vaessen C (2022) Biological activities of Streptomyces sp. BTS40 isolated from the rhizosphere of Artemisia herba-alba Asso. Analele Univ din Oradea Fasc Biol 29(1):7–14

Google Scholar 

Avsar C (2024) Assessment of rice rhizosphere-isolated bacteria for their ability to stimulate plant growth and their antagonistic effects against Xanthomonas arboricola pv. juglandis. 3 Biotech 14:229. https://doi.org/10.1007/s13205-024-04077-5

Article  PubMed  Google Scholar 

Djemouai N, Meklat A, Gaceb-Terrak R, Oulad Hadj Youcef K, Nacer A, Saadi SA, Saad S, Verheecke-Vaessen C, Bouras N (2022) Streptomyces species from the rhizosphere of the medicinal plant Artemisia herba-alba Asso: screening for biological activities. Biologia 77(8):2281–2299. https://doi.org/10.1007/s11756-022-01070-2

Article  CAS  Google Scholar 

Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2(1):6. https://doi.org/10.1186/2193-1801-2-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nautiyal C (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

Article  PubMed  CAS  Google Scholar 

Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362–370

CAS  Google Scholar 

King JE (1932) The colorimetric determination of phosphorus. Biochem J 26:292–297. https://doi.org/10.1042/bj0260292

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophore. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

Article  PubMed  CAS  Google Scholar 

Glick BR, Karaturovıc DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536. https://doi.org/10.1139/m95-070

Article  CAS  Google Scholar 

Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26(1):192–195. https://doi.org/10.1104/pp.26.1.192

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  PubMed  PubMed Central  CAS  Google Scholar 

Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086

Article  PubMed  PubMed Central  CAS  Google Scholar 

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

Article  PubMed  PubMed Central  CAS  Google Scholar 

Okonechnikov K, Conesa A, García-Alcalde F (2016) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32(2):292–294. https://doi.org/10.1093/bioinformatics/btv566

Article  PubMed  CAS  Google Scholar 

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:1–9. https://doi.org/10.1186/1471-2105-10-421

Article  CAS  Google Scholar 

Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. MBE 32(10):2798–2800. https://doi.org/10.1093/molbev/msv150

Article  CAS  Google Scholar 

Kreft Ł, Botzki A, Coppens F, Vandepoele K, Van Bel M (2017) PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 33(18):2946–2947. https://doi.org/10.1093/bioinformatics/btx324

Article  PubMed  CAS 

Comments (0)

No login
gif