Reclamation of Calcareous Sodic Soil by sp. SOTI06, a Calcite Dissolving Bacteria

FAO/IIASA/ISRIC/ISS-CAS/JRC (2008) Harmonized world soil database (version 1.0). FAO, Rome

Mandal AK, Sharma RC, Singh G (2009) Assessment of salt affected soils in India using GIS. Geocarto Int 24(6):437–456. https://doi.org/10.1080/10106040902781002

Article  Google Scholar 

Hailu B, Mehari H (2021) Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: a review. J Nat Sci Res 12:1–10. https://doi.org/10.7176/JNSR/12-3-01

Article  Google Scholar 

Murtaza G, Murtaza B, Usman HM, Ghafoor A (2013) Amelioration of saline-sodic soil using gypsum and low quality water in following sorghum-berseem crop rotation. Int J Agric Biol 15:640–648

CAS  Google Scholar 

Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247. https://doi.org/10.1016/S0065-2113(07)96006-X

Article  CAS  Google Scholar 

Cucci G, Lacolla G, Pallara M, Laviano R (2012) Reclamation of saline and saline-sodic soils using gypsum and leaching water. Afric J Agric Res 7(48):6508–6514. https://doi.org/10.5897/AJAR12.1559

Article  Google Scholar 

Wu L, Jacobson AD, Chen HC, Hausner M (2007) Characterization of elemental release during microbe–basalt interactions at T = 28 °C. Geochim Cosmochim Acta 71(9):2224–2239. https://doi.org/10.1016/j.gca.2007.02.017

Article  CAS  Google Scholar 

Drever J, Vance GF (1994) Role of soil organic acids in mineral weathering processes. In: Pittman ED, Lewan MD (eds) Organic acids in geological processes. Springer, Berlin, pp 138–161. https://doi.org/10.1007/978-3-642-78356-2_6

Chapter  Google Scholar 

Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2012) Role of soil microorganisms in improving P nutrition of plants. In: Adu-Gyamfi JJ (ed) Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Cham, pp 133–143. https://doi.org/10.1007/978-94-017-1570-6_15

Chapter  Google Scholar 

Welch SA, Taunton AE, Banfield JF (2010) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J 19(3):343–367. https://doi.org/10.1080/01490450290098414

Article  CAS  Google Scholar 

Newton RC, Manning CE (2002) Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones. Am Mineral 87:1401–1409. https://doi.org/10.2138/am-2002-1016

Article  Google Scholar 

Rashad YM, Hafez M, Rashad M (2023) Diazotrophic Azotobacter salinestris YRNF3: a probable calcite-solubilizing bio-agent for improving the calcareous soil properties. Sci Rep 13(1):20621. https://doi.org/10.1038/s41598-023-47924-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jacobson AD, Wu L (2009) Microbial dissolution of calcite at T=28°C and ambient pCO2. Geochim Cosmochim Acta 73(8):2314–2331. https://doi.org/10.1016/j.gca.2009.01.020

Article  CAS  Google Scholar 

Subrahmanyam G, Vaghela R, Bhatt NP, Archana G (2012) Carbonate-dissolving bacteria from ‘miliolite’, a bioclastic limestone, from Gopnath, Gujarat. Western India Microbes Environ 27(3):334–337. https://doi.org/10.1264/jsme2.ME11347

Article  PubMed  Google Scholar 

Tamilselvi SM, Thiyagarajan C, Uthandi S (2016) Calcite dissolution by Brevibacterium sp. SOTI06: a futuristic approach for the reclamation of calcareous sodic soils. Front Plant Sci 7:1828. https://doi.org/10.3389/fpls.2016.01828

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qadir M, Qureshi RH, Ahmad N (1996) Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma 74(3):207–217. https://doi.org/10.1016/S0016-7061(96)00061-4

Article  Google Scholar 

Gupta SR, Dagar JC (2016) Agroforestry for ecological restoration of salt-affected lands. In: Dagar JC, Sharma PC, Sharma DK, Singh AK (eds) Innovative saline agriculture. Springer, New Delhi, pp 161–182. https://doi.org/10.1007/978-81-322-2770-0_8

Chapter  Google Scholar 

Stamford NP, Figueiredo MVB, Junior SDS, Freitas ADS, Santos CERS, Junior MAL (2015) Effect of gypsum and sulfur with Acidithiobacillus on soil salinity alleviation and on cowpea biomass and nutrient status as affected by PK rock biofertilizer. Sci Horticu 192:287–292. https://doi.org/10.1016/j.scienta.2015.06.008

Article  CAS  Google Scholar 

Robin P, Morel C, Vial F, Landrain B, Toudic A, Li Y, Akkal-Corfini N (2018) Effect of three types of exogenous organic carbon on soil organic matter and physical properties of a sandy technosol. Sustainability 10(4):1146. https://doi.org/10.3390/su10041146

Article  CAS  Google Scholar 

Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Private Ltd., New Delhi, pp 56–70

Google Scholar 

Black CA (1965) Method of soil analysis. American Society of Agronomy, Madison, pp 573–590

Book  Google Scholar 

Stanford G, English L (1949) Use of flame photometer in rapid soil tests of K. Can J Agron 41:446–447. https://doi.org/10.2134/agronj1949.00021962004100090012x

Article  CAS  Google Scholar 

Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans Am Geophys Union 25:914–928. https://doi.org/10.1029/TR025i006p00914

Article  Google Scholar 

Weaver RW, Angle S, Bottomley P, Bezdick D, Smith S, Tabatabai A, Wollum A (1994) Methods of soil analysis. Part 2. Microbiological and biochemical properties. Soil Sci Soc Am. https://doi.org/10.2136/sssabookser5.2

Article  Google Scholar 

Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307. https://doi.org/10.1016/0038-0717(69)90012-1

Article  CAS  Google Scholar 

Casida JE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376. https://doi.org/10.1097/00010694-196412000-00004

Article  CAS  Google Scholar 

Jackson ML (2005) Soil chemical analysis: advanced course. UW-Madison Libraries Parallel Press, Madison

Google Scholar 

Richards LA (1954) Diagnosis and improvement of saline alkali soils, agriculture, 160, handbook 60. US Department of Agriculture, Washington

Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

Article  PubMed  CAS  Google Scholar 

Kirkpatrick LA, Feenay BC (2005) A simple guide to SPSS for windows-for version 10. Thomson Wadsworth, Belmont

Google Scholar 

Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52. https://doi.org/10.1016/0169-7439(87)80084-9

Article  CAS  Google Scholar 

Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Aca Sci 95:14863–14868. https://doi.org/10.1073/pnas.95.25.14863

Article  CAS  Google Scholar 

Naorem A, Jayaraman S, Dang YP, Dalal RC, Sinha NK, Rao CS, Patra AK (2023) Soil constraints in an arid environment—challenges, prospects, and implications. Agronomy 13(1):220. https://doi.org/10.3390/agronomy13010220

Article  CAS  Google Scholar 

Guo L, Nie Z, Zhou J, An F, Zhang L, Zhang S, Tóth T, Yang F, Wang Z (2023) Effects of organic amendments on soil bacterial community structure and yield in a saline-sodic soil cropped with rice. Land Degrad Dev 34(17):5514–5527. https://doi.org/10.1002/ldr.4861

Article  Google Scholar 

Johnston VE, Martín-Pérez A, Skok S, Mulec J (2021) Microbially-mediated carbonate dissolution and precipitation; towards a protocol for ex-situ, cave-analogue cultivation experiments. Int J Speleol 50(2):3. https://doi.org/10.5038/1827-806X.50.2.2372

Article  Google Scholar 

Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M (2022) Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front Microbiol 13:898979. https://doi.org/10.3389/fmicb.2022.898979

Article  PubMed  PubMed Central  Google Scholar 

Sonntag G (2015) An analysis of microbial involvement in biospeleogenesis with in Lechuguilla cave system. Honors Research Project, Paper165, Department of Biology, The University of Akron

Al-Busaidi A, Cookson P (2003) Salinity–pH relationships in calcareous soils. J Agric Mar Sci 8(1):41–46. https://doi.org/10.24200/jams.vol8iss1pp41-46

Article  Google Scholar 

Jalali M, Lotf MS, Ranjbar F (2020) Changes in some chemical properties of saline-sodic soils over time as affected by organic residues: an incubation study. Pol J Soil Sci 53(1):1–20. https://doi.org/10.17951/pjs

Comments (0)

No login
gif