FAO/IIASA/ISRIC/ISS-CAS/JRC (2008) Harmonized world soil database (version 1.0). FAO, Rome
Mandal AK, Sharma RC, Singh G (2009) Assessment of salt affected soils in India using GIS. Geocarto Int 24(6):437–456. https://doi.org/10.1080/10106040902781002
Hailu B, Mehari H (2021) Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: a review. J Nat Sci Res 12:1–10. https://doi.org/10.7176/JNSR/12-3-01
Murtaza G, Murtaza B, Usman HM, Ghafoor A (2013) Amelioration of saline-sodic soil using gypsum and low quality water in following sorghum-berseem crop rotation. Int J Agric Biol 15:640–648
Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247. https://doi.org/10.1016/S0065-2113(07)96006-X
Cucci G, Lacolla G, Pallara M, Laviano R (2012) Reclamation of saline and saline-sodic soils using gypsum and leaching water. Afric J Agric Res 7(48):6508–6514. https://doi.org/10.5897/AJAR12.1559
Wu L, Jacobson AD, Chen HC, Hausner M (2007) Characterization of elemental release during microbe–basalt interactions at T = 28 °C. Geochim Cosmochim Acta 71(9):2224–2239. https://doi.org/10.1016/j.gca.2007.02.017
Drever J, Vance GF (1994) Role of soil organic acids in mineral weathering processes. In: Pittman ED, Lewan MD (eds) Organic acids in geological processes. Springer, Berlin, pp 138–161. https://doi.org/10.1007/978-3-642-78356-2_6
Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2012) Role of soil microorganisms in improving P nutrition of plants. In: Adu-Gyamfi JJ (ed) Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Cham, pp 133–143. https://doi.org/10.1007/978-94-017-1570-6_15
Welch SA, Taunton AE, Banfield JF (2010) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J 19(3):343–367. https://doi.org/10.1080/01490450290098414
Newton RC, Manning CE (2002) Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones. Am Mineral 87:1401–1409. https://doi.org/10.2138/am-2002-1016
Rashad YM, Hafez M, Rashad M (2023) Diazotrophic Azotobacter salinestris YRNF3: a probable calcite-solubilizing bio-agent for improving the calcareous soil properties. Sci Rep 13(1):20621. https://doi.org/10.1038/s41598-023-47924-w
Article PubMed PubMed Central CAS Google Scholar
Jacobson AD, Wu L (2009) Microbial dissolution of calcite at T=28°C and ambient pCO2. Geochim Cosmochim Acta 73(8):2314–2331. https://doi.org/10.1016/j.gca.2009.01.020
Subrahmanyam G, Vaghela R, Bhatt NP, Archana G (2012) Carbonate-dissolving bacteria from ‘miliolite’, a bioclastic limestone, from Gopnath, Gujarat. Western India Microbes Environ 27(3):334–337. https://doi.org/10.1264/jsme2.ME11347
Tamilselvi SM, Thiyagarajan C, Uthandi S (2016) Calcite dissolution by Brevibacterium sp. SOTI06: a futuristic approach for the reclamation of calcareous sodic soils. Front Plant Sci 7:1828. https://doi.org/10.3389/fpls.2016.01828
Article PubMed PubMed Central CAS Google Scholar
Qadir M, Qureshi RH, Ahmad N (1996) Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma 74(3):207–217. https://doi.org/10.1016/S0016-7061(96)00061-4
Gupta SR, Dagar JC (2016) Agroforestry for ecological restoration of salt-affected lands. In: Dagar JC, Sharma PC, Sharma DK, Singh AK (eds) Innovative saline agriculture. Springer, New Delhi, pp 161–182. https://doi.org/10.1007/978-81-322-2770-0_8
Stamford NP, Figueiredo MVB, Junior SDS, Freitas ADS, Santos CERS, Junior MAL (2015) Effect of gypsum and sulfur with Acidithiobacillus on soil salinity alleviation and on cowpea biomass and nutrient status as affected by PK rock biofertilizer. Sci Horticu 192:287–292. https://doi.org/10.1016/j.scienta.2015.06.008
Robin P, Morel C, Vial F, Landrain B, Toudic A, Li Y, Akkal-Corfini N (2018) Effect of three types of exogenous organic carbon on soil organic matter and physical properties of a sandy technosol. Sustainability 10(4):1146. https://doi.org/10.3390/su10041146
Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Private Ltd., New Delhi, pp 56–70
Black CA (1965) Method of soil analysis. American Society of Agronomy, Madison, pp 573–590
Stanford G, English L (1949) Use of flame photometer in rapid soil tests of K. Can J Agron 41:446–447. https://doi.org/10.2134/agronj1949.00021962004100090012x
Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans Am Geophys Union 25:914–928. https://doi.org/10.1029/TR025i006p00914
Weaver RW, Angle S, Bottomley P, Bezdick D, Smith S, Tabatabai A, Wollum A (1994) Methods of soil analysis. Part 2. Microbiological and biochemical properties. Soil Sci Soc Am. https://doi.org/10.2136/sssabookser5.2
Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307. https://doi.org/10.1016/0038-0717(69)90012-1
Casida JE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376. https://doi.org/10.1097/00010694-196412000-00004
Jackson ML (2005) Soil chemical analysis: advanced course. UW-Madison Libraries Parallel Press, Madison
Richards LA (1954) Diagnosis and improvement of saline alkali soils, agriculture, 160, handbook 60. US Department of Agriculture, Washington
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
Article PubMed CAS Google Scholar
Kirkpatrick LA, Feenay BC (2005) A simple guide to SPSS for windows-for version 10. Thomson Wadsworth, Belmont
Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52. https://doi.org/10.1016/0169-7439(87)80084-9
Eisen M, Spellman P, Brown P, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Aca Sci 95:14863–14868. https://doi.org/10.1073/pnas.95.25.14863
Naorem A, Jayaraman S, Dang YP, Dalal RC, Sinha NK, Rao CS, Patra AK (2023) Soil constraints in an arid environment—challenges, prospects, and implications. Agronomy 13(1):220. https://doi.org/10.3390/agronomy13010220
Guo L, Nie Z, Zhou J, An F, Zhang L, Zhang S, Tóth T, Yang F, Wang Z (2023) Effects of organic amendments on soil bacterial community structure and yield in a saline-sodic soil cropped with rice. Land Degrad Dev 34(17):5514–5527. https://doi.org/10.1002/ldr.4861
Johnston VE, Martín-Pérez A, Skok S, Mulec J (2021) Microbially-mediated carbonate dissolution and precipitation; towards a protocol for ex-situ, cave-analogue cultivation experiments. Int J Speleol 50(2):3. https://doi.org/10.5038/1827-806X.50.2.2372
Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M (2022) Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Front Microbiol 13:898979. https://doi.org/10.3389/fmicb.2022.898979
Article PubMed PubMed Central Google Scholar
Sonntag G (2015) An analysis of microbial involvement in biospeleogenesis with in Lechuguilla cave system. Honors Research Project, Paper165, Department of Biology, The University of Akron
Al-Busaidi A, Cookson P (2003) Salinity–pH relationships in calcareous soils. J Agric Mar Sci 8(1):41–46. https://doi.org/10.24200/jams.vol8iss1pp41-46
Jalali M, Lotf MS, Ranjbar F (2020) Changes in some chemical properties of saline-sodic soils over time as affected by organic residues: an incubation study. Pol J Soil Sci 53(1):1–20. https://doi.org/10.17951/pjs
Comments (0)