Bioactive Fraction of MSA1 Effectively Inhibits Biofilm Forming Clinically Significant AMR Pathogens

Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M et al (2022) Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci 170:106103. https://doi.org/10.1016/j.ejps.2021.106103

Article  CAS  PubMed  Google Scholar 

Al-Tawfiq JA, Momattin H, Al-Ali AY, Eljaaly K, Tirupathi R, Haradwala MB et al (2022) Antibiotics in the pipeline: a literature review (2017–2020). Infection 50(3):553–564. https://doi.org/10.1007/s15010-021-01709-3

Article  PubMed  Google Scholar 

Law JW, Law LN, Letchumanan V, Tan LT, Wong SH, Chan KG et al (2020) Anticancer drug discovery from microbial sources: the unique mangrove streptomycetes. Molecules 25(22):5365. https://doi.org/10.3390/molecules25225365

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8(1):69–85. https://doi.org/10.1038/nrd2487

Article  CAS  PubMed  Google Scholar 

Dharmaraj S (2010) Marine streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 26:2123–2139. https://doi.org/10.1007/s11274-010-0415-6

Article  CAS  Google Scholar 

National Research Council (US) Committee on the Ocean’s role in Human health. (1999). From monsoons to microbes: Understanding the Ocean’s Role in Human Health. Washington (DC): National Academies Press (US); 4, Marine-derived pharmaceuticals and related bioactive agents. 71–86. https://www.ncbi.nlm.nih.gov/books/NBK230700/

Stien D (2020) Marine microbial diversity as a source of bioactive natural products. Mar Drugs 18(4):215. https://doi.org/10.3390/md18040215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdelmohsen UR, Bayer K, Hentschel U (2014) Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat Prod Rep 31(3):381–399. https://doi.org/10.1039/C3NP70111E

Article  CAS  PubMed  Google Scholar 

Fahmy NM, Abdel-Tawab AM (2021) Isolation and characterization of marine sponge-associated Streptomyces sp. NMF6 strain producing secondary metabolite(s) possessing antimicrobial, antioxidant, anticancer, and antiviral activities. J Genet Eng Biotechnol. 19(1):102. https://doi.org/10.1186/s43141-021-00203-5

Article  PubMed  PubMed Central  Google Scholar 

Selvin J, Joseph S, Asha KR, Manjusha WA, Sangeetha VS, Jayaseema DM et al (2004) Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS Microbiol Ecol 50(2):117–122. https://doi.org/10.1016/j.femsec.2004.06.007

Article  CAS  PubMed  Google Scholar 

Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79

Article  PubMed  Google Scholar 

Hockett KL, Baltrus DA (2017) Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds. JoVE 15:15–16

Google Scholar 

Kurtböke Dİ (2022) Correct interpretation of actinomycete imagery using scanning electron microscopy. Microbiol Australia 43(1):28–31. https://doi.org/10.1071/MA22009

Article  Google Scholar 

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

CAS  Google Scholar 

Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res. https://doi.org/10.1093/nar/gkn201

Article  PubMed  PubMed Central  Google Scholar 

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajaram SK, Ahmad P, Keerthana SSS, Cressida PJ, Moorthy IG, Suresh RS (2020) Extraction and purification of an antimicrobial bioactive element from lichen associated Streptomyces olivaceus LEP7 against wound inhabiting microbial pathogens. J King Saud Univ-Sci 32(3):2009–2015. https://doi.org/10.1016/j.jksus.2020.01.039

Article  Google Scholar 

Singh LS, Sharma H, Talukdar NC (2014) Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur India. BMC Microbiol 14:278. https://doi.org/10.1186/s12866-014-0278-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dholakiya RN, Kumar R, Mishra A, Mody KH, Jha B (2017) Antibacterial and antioxidant activities of novel Actinobacteria strain isolated from Gulf of Khambhat. Gujarat Front Microbiol 8:2420. https://doi.org/10.3389/fmicb.2017.02420

Article  PubMed  Google Scholar 

Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK et al (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology (Reading) 146(Pt 10):2395–2407. https://doi.org/10.1099/00221287-146-10-2395

Article  CAS  PubMed  Google Scholar 

Lakshmikanth AR, Rangesh K, Chellapandi P, Prathiviraj R, Anand M (2023) Inter and intra-specific relationship between goat fishes Upeneus vittatus (Forsskal, 1775) and Upeneus tragula based on their mtCOI gene from Palk Bay and Gulf of Mannar Coast (Mandapam, Tamil Nadu) of India. Gene Rep 30:101713. https://doi.org/10.1016/j.genrep.2022.101713

Article  CAS  Google Scholar 

Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595. https://doi.org/10.1093/genetics/123.3.585

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pankey GA, Sabath LD (2004) Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clin Infect Dis 38(6):864–870. https://doi.org/10.1086/381972

Article  CAS  PubMed  Google Scholar 

Gandhimathi R, Arunkumar M, Selvin J, Thangavelu T, Sivaramakrishnan S, Kiran GS et al (2008) Antimicrobial potential of sponge associated marine actinomycetes. J de Mycol Méd 18(1):16–22. https://doi.org/10.1016/j.mycmed.2007.11.00

Article  Google Scholar 

Alam K, Mazumder A, Sikdar S, Zhao YM, Hao J, Song C et al (2022) Streptomyces: the biofactory of secondary metabolites. Front Microbiol 13:968053. https://doi.org/10.3389/fmicb.2022.968053

Article  PubMed  PubMed Central  Google Scholar 

Hasaneen M, El-Sayed A, Sabry S (2018) Identification, characterization and optimized antimicrobial production of Streptomyces thinghirensis isolate. J Agric Chem Biotechn 9(12):263–268. https://doi.org/10.21608/jacb.2018.36315

Article  Google Scholar 

Alam MT, Medema MH, Takano E, Breitling R (2011) Comparative genome-scale metabolic modeling of actinomycetes: the topology of essential core metabolism. FEBS Lett 585(14):2389–2394. https://doi.org/10.1016/j.febslet.2011.06.014

Article  CAS  PubMed  Google Scholar 

Elibol M (2004) Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem 39(9):1057–1062. https://doi.org/10.1016/S0032-9592(03)00232-2

Article  CAS  Google Scholar 

El-Housseiny GS, Ibrahim AA, Yassien MA, Aboshanab KM (2021) Production and statistical optimization of paromomycin by Streptomyces rimosus NRRL 2455 in solid state fermentation. BMC Microbiol 21(1):34. https://doi.org/10.1186/s12866-021-02093-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kader MMA, Sambantham M, Vinoth J (2020) Antifungal potential of purified 3-(4-isopropylstyryl)-5-methylcyclohex-2-enone from marine actinobacteria Streptomyces albus A18. Brazil J Biol Sci 7(16):153–163

Comments (0)

No login
gif