Pathogen Partnerships or Power Struggles? , and Dynamics in Cystic Fibrosis

Beaudoin T, Yau YCW, Stapleton PJ et al (2017) Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms Microbiomes 3:25. https://doi.org/10.1038/s41522-017-0035-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin I, Waters V, Grasemann H (2021) Molecular sciences approaches to targeting bacterial biofilms in cystic fibrosis airways. https://doi.org/10.3390/ijms22042155

Filkins LM, Graber JA, Olson DG et al (2015) Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol 197:2252–2264. https://doi.org/10.1128/JB.00059-15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rumpf C, Lange J, Schwartbeck B, Kahl BC (2021) Staphylococcus aureus and cystic fibrosis—a close relationship. What can we learn from sequencing studies ? Pathogens 10(9):1177

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jean-Pierre F, Vyas A, Hampton TH et al (2021) One versus many: polymicrobial communities and the cystic fibrosis airway. mBio 12:1–7. https://doi.org/10.1128/mBio.00006-21

Article  Google Scholar 

Maisetta G, Batoni G (2020) Editorial: interspecies interactions: effects on virulence and antimicrobial susceptibility of bacterial and fungal pathogens. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01922

Article  PubMed  PubMed Central  Google Scholar 

Monteiro R, Magalhães AP, Pereira MO, Sousa AM (2021) Long-term coexistence of Pseudomonas aeruginosa and Staphylococcus aureus using an in vitro cystic fibrosis model. Future Microbiol 16:879–893. https://doi.org/10.2217/fmb-2021-0025

Article  CAS  PubMed  Google Scholar 

Briaud P, Camus L, Bastien S et al (2019) Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep 9:16564. https://doi.org/10.1038/s41598-019-52975-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cystic Fibrosis Foundation (2009) Cystic Fibrosis Foundation Patient Registry 2008 annual data report. Cystic Fibrosis Foundation, Bethesda

Google Scholar 

Baldan R, Cigana C, Testa F et al (2014) Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS ONE 9:e89614. https://doi.org/10.1371/journal.pone.0089614

Article  CAS  PubMed  PubMed Central  Google Scholar 

Camus L, Briaud P, Vandenesch F et al (2021) How bacterial adaptation to cystic fibrosis environment shapes interactions between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 12:617784. https://doi.org/10.3389/fmicb.2021.617784

Article  PubMed  PubMed Central  Google Scholar 

CLSI (2019) M100 performance standards for antimicrobial susceptibility tests, 29th edn. Clinical and Laboratory Standards Institute, Wayne

Google Scholar 

Stepanović S, Vuković D, Hola V et al (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

Article  PubMed  Google Scholar 

Kirchner S, Fothergill JL, Wright EA et al (2012) Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. https://doi.org/10.3791/3857

Article  PubMed  PubMed Central  Google Scholar 

Clinical and Laboratory Standards Institute (2014) Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement M100-S24. CLSI, Wayne

Google Scholar 

Lopes SP, Azevedo NF, Pereira MO (2014) Emergent bacteria in cystic fibrosis: in vitro biofilm formation and resilience under variable oxygen conditions. Biomed Res Int 2014:1–7. https://doi.org/10.1155/2014/678301

Article  CAS  Google Scholar 

Zhang L, Fritsch M, Hammond L et al (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS ONE 8(4):e61625. https://doi.org/10.1371/journal.pone.0061625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wijesinghe G, Dilhari A, Gayani B et al (2018) Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Med Princ Pract. https://doi.org/10.1159/000494757

Article  PubMed  PubMed Central  Google Scholar 

Pallett R, Leslie LJ, Lambert PA, et al (nd) Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. https://doi.org/10.1038/s41598-019-42952-x

Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:1–12. https://doi.org/10.1186/1471-2105-7-85

Article  CAS  Google Scholar 

Woods PW, Haynes ZM, Mina EG, Marques CNH (2019) Maintenance of S. aureus in co-culture with P. aeruginosa while growing as biofilms. Front Microbiol 9:1–9. https://doi.org/10.3389/fmicb.2018.03291

Article  Google Scholar 

Beaume M, Köhler T, Fontana T et al (2015) Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00321

Article  PubMed  PubMed Central  Google Scholar 

Barakat HS, Kassem MA, El-Khordagui LK, Khalafallah NM (2014) Vancomycin-eluting niosomes: a new approach to the inhibition of staphylococcal biofilm on abiotic surfaces. AAPS PharmSciTech 15:1263–1274. https://doi.org/10.1208/s12249-014-0141-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Snecdecor GW, Cochran WG (1991) Statistical methods. Wiley-Blackwell, Hoboken

Google Scholar 

Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F (2018) Microbial wars: competition in ecological niches and within the microbiome. Microb Cell. https://doi.org/10.15698/mic2018.05.628

Article  PubMed  PubMed Central  Google Scholar 

Erfanimanesh S, Emaneini M, Modaresi MR et al (2022) Distribution and characteristics of bacteria isolated from cystic fibrosis patients with pulmonary exacerbation. Can J Infect Dis Med Microbiol. https://doi.org/10.1155/2022/5831139

Article  PubMed  PubMed Central  Google Scholar 

Høiby N (2002) Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. J Cyst Fibrosis 1:249–254. https://doi.org/10.1016/S1569-1993(02)00104-2

Article  Google Scholar 

Jean-Pierre F, Vyas A, Hampton TH et al (2021) One versus many: polymicrobial communities and the cystic fibrosis airway. mBio. https://doi.org/10.1128/mBio.00006-21

Article  PubMed  PubMed Central  Google Scholar 

Hoffman LR, Déziel E, D’Argenio DA et al (2006) Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 103:19890–19895. https://doi.org/10.1073/pnas.0606756104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M (2013) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci USA 110:1059–1064. https://doi.org/10.1073/pnas.1214550110

Article  PubMed  Google Scholar 

Bottery MJ, Friman V, Matthews JL, Wood AJ (2021) Inter-species interactions alter antibiotic efficacy in bacterial communities. https://doi.org/10.1038/s41396-021-01130-6

Wijesinghe G, Dilhari A, Gayani B et al (2019) Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Med Princ Pract 28:28–35. https://doi.org/10.1159/000494757

Article  PubMed  Google Scholar 

Sriramulu DD, Lünsdorf H, Lam JS, Römling U (2005) Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54:667–676. https://doi.org/10.1099/jmm.0.45969-0

Article  PubMed  Google Scholar 

Comments (0)

No login
gif