Beaudoin T, Yau YCW, Stapleton PJ et al (2017) Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms Microbiomes 3:25. https://doi.org/10.1038/s41522-017-0035-0
Article CAS PubMed PubMed Central Google Scholar
Martin I, Waters V, Grasemann H (2021) Molecular sciences approaches to targeting bacterial biofilms in cystic fibrosis airways. https://doi.org/10.3390/ijms22042155
Filkins LM, Graber JA, Olson DG et al (2015) Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol 197:2252–2264. https://doi.org/10.1128/JB.00059-15
Article CAS PubMed PubMed Central Google Scholar
Rumpf C, Lange J, Schwartbeck B, Kahl BC (2021) Staphylococcus aureus and cystic fibrosis—a close relationship. What can we learn from sequencing studies ? Pathogens 10(9):1177
Article CAS PubMed PubMed Central Google Scholar
Jean-Pierre F, Vyas A, Hampton TH et al (2021) One versus many: polymicrobial communities and the cystic fibrosis airway. mBio 12:1–7. https://doi.org/10.1128/mBio.00006-21
Maisetta G, Batoni G (2020) Editorial: interspecies interactions: effects on virulence and antimicrobial susceptibility of bacterial and fungal pathogens. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01922
Article PubMed PubMed Central Google Scholar
Monteiro R, Magalhães AP, Pereira MO, Sousa AM (2021) Long-term coexistence of Pseudomonas aeruginosa and Staphylococcus aureus using an in vitro cystic fibrosis model. Future Microbiol 16:879–893. https://doi.org/10.2217/fmb-2021-0025
Article CAS PubMed Google Scholar
Briaud P, Camus L, Bastien S et al (2019) Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep 9:16564. https://doi.org/10.1038/s41598-019-52975-z
Article CAS PubMed PubMed Central Google Scholar
Cystic Fibrosis Foundation (2009) Cystic Fibrosis Foundation Patient Registry 2008 annual data report. Cystic Fibrosis Foundation, Bethesda
Baldan R, Cigana C, Testa F et al (2014) Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS ONE 9:e89614. https://doi.org/10.1371/journal.pone.0089614
Article CAS PubMed PubMed Central Google Scholar
Camus L, Briaud P, Vandenesch F et al (2021) How bacterial adaptation to cystic fibrosis environment shapes interactions between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 12:617784. https://doi.org/10.3389/fmicb.2021.617784
Article PubMed PubMed Central Google Scholar
CLSI (2019) M100 performance standards for antimicrobial susceptibility tests, 29th edn. Clinical and Laboratory Standards Institute, Wayne
Stepanović S, Vuković D, Hola V et al (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
Kirchner S, Fothergill JL, Wright EA et al (2012) Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. https://doi.org/10.3791/3857
Article PubMed PubMed Central Google Scholar
Clinical and Laboratory Standards Institute (2014) Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement M100-S24. CLSI, Wayne
Lopes SP, Azevedo NF, Pereira MO (2014) Emergent bacteria in cystic fibrosis: in vitro biofilm formation and resilience under variable oxygen conditions. Biomed Res Int 2014:1–7. https://doi.org/10.1155/2014/678301
Zhang L, Fritsch M, Hammond L et al (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS ONE 8(4):e61625. https://doi.org/10.1371/journal.pone.0061625
Article CAS PubMed PubMed Central Google Scholar
Wijesinghe G, Dilhari A, Gayani B et al (2018) Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Med Princ Pract. https://doi.org/10.1159/000494757
Article PubMed PubMed Central Google Scholar
Pallett R, Leslie LJ, Lambert PA, et al (nd) Anaerobiosis influences virulence properties of Pseudomonas aeruginosa cystic fibrosis isolates and the interaction with Staphylococcus aureus. https://doi.org/10.1038/s41598-019-42952-x
Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:1–12. https://doi.org/10.1186/1471-2105-7-85
Woods PW, Haynes ZM, Mina EG, Marques CNH (2019) Maintenance of S. aureus in co-culture with P. aeruginosa while growing as biofilms. Front Microbiol 9:1–9. https://doi.org/10.3389/fmicb.2018.03291
Beaume M, Köhler T, Fontana T et al (2015) Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00321
Article PubMed PubMed Central Google Scholar
Barakat HS, Kassem MA, El-Khordagui LK, Khalafallah NM (2014) Vancomycin-eluting niosomes: a new approach to the inhibition of staphylococcal biofilm on abiotic surfaces. AAPS PharmSciTech 15:1263–1274. https://doi.org/10.1208/s12249-014-0141-8
Article CAS PubMed PubMed Central Google Scholar
Snecdecor GW, Cochran WG (1991) Statistical methods. Wiley-Blackwell, Hoboken
Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F (2018) Microbial wars: competition in ecological niches and within the microbiome. Microb Cell. https://doi.org/10.15698/mic2018.05.628
Article PubMed PubMed Central Google Scholar
Erfanimanesh S, Emaneini M, Modaresi MR et al (2022) Distribution and characteristics of bacteria isolated from cystic fibrosis patients with pulmonary exacerbation. Can J Infect Dis Med Microbiol. https://doi.org/10.1155/2022/5831139
Article PubMed PubMed Central Google Scholar
Høiby N (2002) Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. J Cyst Fibrosis 1:249–254. https://doi.org/10.1016/S1569-1993(02)00104-2
Jean-Pierre F, Vyas A, Hampton TH et al (2021) One versus many: polymicrobial communities and the cystic fibrosis airway. mBio. https://doi.org/10.1128/mBio.00006-21
Article PubMed PubMed Central Google Scholar
Hoffman LR, Déziel E, D’Argenio DA et al (2006) Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 103:19890–19895. https://doi.org/10.1073/pnas.0606756104
Article CAS PubMed PubMed Central Google Scholar
Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M (2013) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci USA 110:1059–1064. https://doi.org/10.1073/pnas.1214550110
Bottery MJ, Friman V, Matthews JL, Wood AJ (2021) Inter-species interactions alter antibiotic efficacy in bacterial communities. https://doi.org/10.1038/s41396-021-01130-6
Wijesinghe G, Dilhari A, Gayani B et al (2019) Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Med Princ Pract 28:28–35. https://doi.org/10.1159/000494757
Sriramulu DD, Lünsdorf H, Lam JS, Römling U (2005) Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54:667–676. https://doi.org/10.1099/jmm.0.45969-0
Comments (0)