Liu T, Kang J, Liu L (2021) Thymol as a critical component of Thymus vulgaris L. essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm. LWT 136:110354. https://doi.org/10.1016/j.lwt.2020.110354
Dosler S, Karaaslan E (2014) Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 62:32–37. https://doi.org/10.1016/j.peptides.2014.09.021
Article PubMed CAS Google Scholar
Xu Z, Xie J, Soteyome T, Peters BM, Shirtliff ME, Liu J, Harro JM (2019) Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Curr Opin Food Sci 26:57–64. https://doi.org/10.1016/j.cofs.2019.03.006
Dhar S, Kumari H, Balasubramanian D, Mathee K (2018) Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa - their role in developing resistance. J Med Microbiol 67:1–21. https://doi.org/10.1099/jmm.0.000636
Article PubMed CAS Google Scholar
CDC (2019) Antibiotic resistance threats in the United States, 2019. US Centers for Disease Control and Prevention, Atlanta. https://doi.org/10.15620/cdc:82532
Quintieri L, Fanelli F, Caputo L (2019) Antibiotic resistant Pseudomonas spp. spoilers in fresh dairy products: an underestimated risk and the control strategies. Foods 8:372. https://doi.org/10.3390/foods8090372
Article PubMed PubMed Central CAS Google Scholar
Ciofu O, Tolker-Nielsen T (2019) Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents: How P. aeruginosa can escape antibiotics. Front Microbiol 10:913. https://doi.org/10.3389/fmicb.2019.00913
Article PubMed PubMed Central Google Scholar
Kim Y, Nahar S, Cho AJ, Mahamud AGMSU, Park SH, Ha SD (2023) Synergistic antibacterial effect of DNase I and eugenol against Salmonella Enteritidis biofilm on smoked duck and food contact surfaces. Food Control 150:109764. https://doi.org/10.1016/j.foodcont.2023.109764
Mahamud AU, Nahar S, Ashrafudoulla M, Park SH, Ha SD (2022) Insights into antibiofilm mechanisms of phytochemicals: prospects in the food industry. Crit Rev Food Sci Nutr 64:1736–1763. https://doi.org/10.1080/10408398.2022.2119201
de Sousa T, Hébraud M, Alves O, Costa E, Maltez L, Pereira JE, Martins Â, Igrejas G, Poeta P (2023) Study of antimicrobial resistance, biofilm formation, and motility of Pseudomonas aeruginosa derived from urine samples. Microorganisms 11:1345. https://doi.org/10.3390/microorganisms11051345
Article PubMed PubMed Central CAS Google Scholar
Schniederberend M, Williams JF, Shine E, Shen C, Jain R, Emonet T, Kazmierczak BI (2019) Modulation of flagellar rotation in surface-attached bacteria: a pathway for rapid surface-sensing after flagellar attachment. PLoS Pathog 15:e1008149. https://doi.org/10.1371/journal.ppat.1008149
Article PubMed PubMed Central CAS Google Scholar
Wayne PA (2011) Performance standards for antimicrobial susceptibility testing; twenty first informational supplement. CLSI Document M100-S21. Clinical Laboratory Standards Institute. https://webstore.ansi.org/standards/clsi/m100s20uvol3015
Shukla SK, Rao TS (2017) An improved crystal violet assay for biofilm quantification in 96-well microtitre plate. bioRxiv:100214. https://doi.org/10.1101/100214
Jahid IK, Lee NY, Kim A, Ha SD (2013) Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. J Food Prot 76:239–247. https://doi.org/10.4315/0362-028x.Jfp-12-321
Article PubMed CAS Google Scholar
Sadekuzzaman M, Mizan MFR, Kim HS, Yang S, Ha SD (2018) Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. LWT 89:134–139. https://doi.org/10.1016/j.lwt.2017.10.042
Mahamud AU, Ashrafudoulla M, Nahar S, Chowdhury MAH, Park SH, Ha SD (2024) Luteolin exhibits antimicrobial actions against Salmonella Typhimurium and Escherichia coli: impairment of cell adhesion, membrane integrity, and energy metabolism. Food Control 166:110734. https://doi.org/10.1016/j.foodcont.2024.110734
Ashrafudoulla M, Mizan MFR, Ha AJ, Park SH, Ha SD (2020) Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus. Food Microbiol 91:103500. https://doi.org/10.1016/j.fm.2020.103500
Article PubMed CAS Google Scholar
Soni KA, Jesudhasan PR, Cepeda M, Williams B, Hume M, Russell WK, Jayaraman A, Pillai SD (2008) Autoinducer AI-2 is involved in regulating a variety of cellular processes in Salmonella Typhimurium. Foodborne Pathog Dis 5:147–153. https://doi.org/10.1089/fpd.2007.0050
Article PubMed CAS Google Scholar
Truchado P, Gil-Izquierdo A, Tomás-Barberán F, Allende A (2009) Inhibition by chestnut honey of N-Acyl-L-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. J Agric Food Chem 57:11186–11193. https://doi.org/10.1021/jf9029139
Article PubMed CAS Google Scholar
Jahid IK, Mizan MFR, Myoung J, Ha SD (2018) Aeromonas hydrophila biofilm, exoprotease, and quorum sensing responses to co-cultivation with diverse foodborne pathogens and food spoilage bacteria on crab surfaces. Biofouling 34:1079–1092. https://doi.org/10.1080/08927014.2018.1519069
Article PubMed CAS Google Scholar
Yin X, Chambers JR, Wheatcroft R, Johnson RP, Zhu J, Liu B, Gyles CL (2009) Adherence of Escherichia coli O157:H7 mutants in vitro and in ligated pig intestines. Appl Environ Microbiol 75:4975–4983. https://doi.org/10.1128/aem.00297-09
Article PubMed PubMed Central CAS Google Scholar
Delhalle L, Taminiau B, Fastrez S, Fall A, Ballesteros M, Burteau S, Daube G (2020) Evaluation of enzymatic cleaning on food processing installations and food products bacterial microflora. Front Microbiol 11:1827. https://doi.org/10.3389/fmicb.2020.01827
Article PubMed PubMed Central Google Scholar
Thi MTT, Wibowo D, Rehm BHA (2020) Pseudomonas aeruginosa biofilms. Int J Mol Sci 21:8671. https://doi.org/10.3390/ijms21228671
Article PubMed PubMed Central CAS Google Scholar
Li X, Gu N, Huang TY, Zhong F, Peng G (2022) Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front Microbiol 13:1114199. https://doi.org/10.3389/fmicb.2022.1114199
Nguyen UT, Burrows LL (2014) DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int J Food Microbiol 187:26–32. https://doi.org/10.1016/j.ijfoodmicro.2014.06.025
Article PubMed CAS Google Scholar
Esposito MM, Turku S (2023) The use of natural methods to control foodborne biofilms. Pathogens 12:45. https://doi.org/10.3390/pathogens12010045
Elchinger PH, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Taillefumier C, Michaud P (2014) Effect of proteases against biofilms of Staphylococcus aureus and Staphylococcus epidermidis. Lett Appl Microbiol 59:507–513. https://doi.org/10.1111/lam.12305
Article PubMed CAS Google Scholar
Xie D, Gao Y, Du L, Shen Y, Xie J, Wei D (2021) Effect of flavorzyme-modified soy protein on the functional properties, texture and microstructure of Mozzarella cheese analogue. J Food Process Preserv 45:e15963. https://doi.org/10.1111/jfpp.15963
Ranieri MRM, Whitchurch CB, Burrows LL (2018) Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Curr Opin Microbiol 45:164–169. https://doi.org/10.1016/j.mib.2018.07.006
Article PubMed CAS Google Scholar
Kaplan JB, Izano EA, Gopal P, Karwacki MT, Kim S, Bose JL, Bayles KW, Horswill AR (2012) Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. MBio 3:e00198-12. https://doi.org/10.1128/mBio.00198-12
Comments (0)