Diuzheva A, Dejmková H, Fischer J, Andruch V (2019) Simultaneous determination of three carbamate pesticides using vortex-assisted liquid–liquid microextraction combined with HPLC-amperometric detection. Microchem J 150:104071. https://doi.org/10.1016/j.microc.2019.104071
Ni YN, Liu GL, Serge K (2008) Fluorescence spectrometric study on the interactions of Isoprocarb and sodium 2-isopropylphenate with bovine serum albumin. Talanta 76(3):513–521. https://doi.org/10.1016/j.talanta.2008.03.037
Article PubMed CAS Google Scholar
Guan CJ, Zhao GD, Sun C, Zhang MY, Liu SY, Jiang ZY, Li WW, Peng Y, Zheng J (2023) Metabolic activation of pesticide isoprocarb mediated by CYP3A4 and the possible correlation with its cytotoxicity. J Agric Food Chem 71(5):2390–2398. https://doi.org/10.1021/acs.jafc.2c07206
Article PubMed CAS Google Scholar
Sumitra A, Anu K (2021) Mixture toxicity assessment of selected insecticides to silver perch fingerling. Bidyanus bidyanus Ecotox Environ Safe 226:112790. https://doi.org/10.1016/J.ECOENV.2021.112790
Wang SH, Han X, Yu TT, Liu YL, Zhang HY, Mao HL, Hu CY, Xu XW (2022) Isoprocarb causes neurotoxicity of zebrafish embryos through oxidative stress-induced apoptosis. Ecotox Environ Safe 242:113870–113870. https://doi.org/10.1016/J.ECOENV.2022.113870
Chai XY, Wang JN, Li FF, Bao XD, Gao Y (2011) Effect of isoprocarb on migration and differentiation of mouse neural stem cells. J Toxico Sci 25(02):131–135
Gu HT, Yuan YD, Cai M, Wang DS, Lv WG (2021) Toxicity of isoprocarb to earthworms (Eisenia fetida): oxidative stress, neurotoxicity, biochemical responses and detoxification mechanisms. Environ Pollut 290:118038–118038. https://doi.org/10.1016/J.ENVPOL.2021.118038
Article PubMed CAS Google Scholar
Kurnia A, Ardiwinata AN, Harsanti ES, Sutriadi MT, Mulyono A, Makmur RF, Hindersah R (2024) Chlorpyriphos and isoprocarb residues in the soil and food crop at agricultural area of citarum watershed. AIP Conf Proc 2957(1):100009. https://doi.org/10.1063/5.0184011
Xu L, Granger C, Dong H, Mao Y, Duan SL, Jin L, Qiang ZM (2020) Occurrences of 29 pesticides in the Huangpu River, China: highest ecological risk identified in Shanghai metropolitan area. Chemosphere 251:126411. https://doi.org/10.1016/j.chemosphere.2020.126411
Article PubMed CAS Google Scholar
Chen Y, Huang R, Guan YS, Zhuang TY, Wang YY, Tan RC, Wang J, Zhou RJ, Wang BY, Xu JN, Zhang XL, Zhou K, Sun RL, Chen MJ (2021) The profiling of elements and pesticides in surface water in Nanjing, China with global comparisons. Sci Total Environ 774:145749–145749. https://doi.org/10.1016/J.SCITOTENV.2021.145749
Article PubMed CAS Google Scholar
Gong YR, Wang Y, Dong JB, Yang J, Ren XW, Gong BL (2014) Preparation of isoprocarb surface molecular-imprinted materials and its recognition character. J Anal Chem 42(1):28–35. https://doi.org/10.1016/S1872-2040(13)60704-5
Mustapha MU, Halimoon N, Johar WLW, Abd Shukor MY (2019) An overview on biodegradation of carbamate pesticides by soil bacteria. Pertanika J Sci and Technol 27(2):547–563
Gupta J, Rathour R, Singh R, Thakur IS (2019) Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7. Bioresour Technol 282:417–424. https://doi.org/10.1016/j.biortech.2019.03.054
Article PubMed CAS Google Scholar
Jiang ZY, Qu LW, Song GP, Liu J, Zhong GH (2022) The potential binding interaction and hydrolytic mechanism of carbaryl with the novel esterase PchA in Pseudomonas sp. PS21. J Agric Food Chem. https://doi.org/10.1021/ACS.JAFC.1C06465
Article PubMed PubMed Central Google Scholar
Ke ZJ, Zhu Q, Gao SY, Zhang ML, Jiang ML, Ren YJ, Liu YL, Zhou YD, Qiu J, Hong Q (2021) Two LysR family transcriptional regulators, McbH and McbN, activate the operons responsible for the midstream and downstream pathways of carbaryl degradation in Pseudomonas sp. strain XWY-1, respectively. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02060-21
Article PubMed PubMed Central Google Scholar
Wu Q, Li FF, Zhu XK, An YJ, Zhu YZ (2022) Isolation and characterization of cyromazine degrading Acinetobacter sp. ZX01 from a Chinese ginger cultivated soil. Environ Sci Pollut Res 29(45):67765–67775. https://doi.org/10.1007/S11356-022-20538-X
Hu KD, Wang XJ, Zhu JW, Liu AP, Ao XL, He L, Chen SJ, Zhou K, Yang Y, Zou LK, Liu SL (2020) Characterization of carbaryl-degrading strain Bacillus licheniformis B-1 and its hydrolase identification. Biodegradation 31(1–2):139–152. https://doi.org/10.1007/s10532-020-09899-7
Article PubMed CAS Google Scholar
Chen FF, Pang JN, Ma CM, Qi LJ, Li TJ (2018) Biodegradation of carbamate pesticide by Lactic acid bacteria. China Inst Food Sci Technol 18:102–108. https://doi.org/10.16429/j.1009-7848.2018.10.014
Zhu SJ, Qiu JG, Wang H, Wang X, Jin W, Zhang YK, Zhang CF, Hu G, He J, Hong Q (2018) Cloning and expression of the carbaryl hydrolase gene mcbA and the identification of a key amino acid necessary for carbaryl hydrolysis. J Hazard 344:1126–1135. https://doi.org/10.1016/j.jhazmat.2017.12.006
Tomasek PH, Karns JS (1989) Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111 and its expression in gram-negative bacteria. Bacteriol 171(7):4038–4044. https://doi.org/10.1128/jb.171.7.4038-4044.1989
Jiang WK, Zhang ML, Gao SY, Zhu Q, Qiu JG, Yan X, FX JiangHong XMQ (2022) Comparative genomic analysis of carbofuran-degrading sphingomonads reveals the carbofuran catabolism mechanism in Sphingobium sp. strain CFD-1. Appl Environ Microbiol 88(22):e0102422–e0102422. https://doi.org/10.1128/AEM.01024-22
Yan X, Jin W, Wu G, Jiang WK, Yang ZG, Ji JB, Qiu JG, He J, Jiang JD, Hong Q (2018) Hydrolase CehA and monooxygenase CfdC are responsible for carbofuran degradation in Sphingomonas sp. strain CDS-1. Appl Appl Environ Microbiol 84(16):e00805-e818. https://doi.org/10.1128/AEM.00805-18
Article PubMed CAS Google Scholar
Nguyen TPO, Helbling DE, Bers K, Fida TT, Wattiez R, Kohler HPE, Springael D, De Mot R (2014) Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65. 2. Appl Microbiol Biotechnol 98:8235–8252. https://doi.org/10.1007/s00253-014-5858-5
Article PubMed CAS Google Scholar
Ke ZJ, Zhu Q, Jiang WK, Zhou YD, Zhang ML, Jiang ML, Hong Q (2021) Heterologous expression and exploration of the enzymatic properties of the carbaryl hydrolase CarH from a newly isolated carbaryl-degrading strain. Ecotox Environ Safe 224:112666–112666. https://doi.org/10.1016/J.ECOENV.2021.112666
Masayuki H, Atsushi M, Kanako T, Mayumi OK, Takahiro S, Masahito H (2006) Cloning and nucleotide sequence of carbaryl hydrolase gene (cahA ) from Arthrobacter sp. RC100. J Biosci Bioeng 101(5):410–414. https://doi.org/10.1263/jbb.101.410
Hashimoto M, Fukui M, Hayano K, Hayatsu M (2002) Nucleotide sequence and genetic structure of a novel carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100. Appl Environ Microbiol 68(3):1220–1227. https://doi.org/10.1128/AEM.68.3.1220-1227.2002
Article PubMed PubMed Central CAS Google Scholar
Jiang WK, Zhang CF, Gao QQ, Zhang ML, Qiu JG, Yan X, Hong Q (2020) Carbamate C-N hydrolase gene ameH responsible for the detoxification step of methomyl degradation in Aminobacter aminovorans strain MDW-2. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02005-20
Article PubMed PubMed Central Google Scholar
Konstantina ER, Eleni EC, Dafne EG, Eftychia ES, Demetra EK, Panagiotis EK, Spyridon EN, Maria ET, Emmanuel AT, Dimitrios GK (2016) Isolation of oxamyl-degrading bacteria and identification of cehA as a novel oxamyl hydrolase gene. Front Microbiol 7:616. https://doi.org/10.3389/fmicb.2016.00616
Zhu Q, Liu HF, Pan KH, Zhu WH, Qiao YH, Li Q, Hu JQ, Zhang ML, Qiu JG, Yan X, Ge J, Hong Q (2024) The novel hydrolase IpcH initiates the degradation of isoprocarb in a newly isolated strain Rhodococcus sp. D-6. J Hazard 476:135045–135045. https://doi.org/10.1016/J.JHAZMAT.2024.135045
Chu CW, Liu B, Zhu QL, Li N, He J (2018) Isolation, identification, and the degradation characteristics of a thiobencarbdegrading bacter
Comments (0)