So Y, Chhetri G, Kim I, Park S, Jung Y, Seo T (2024) Roseateles caseinilyticus sp. nov. and Roseateles cellulosilyticus sp. nov., isolated from rice paddy field soil. Antonie Van Leeuwenhoek 117(1):87. https://doi.org/10.1007/s10482-024-01988-4
Woo H, Chhetri G, Kim I, So Y, Park S, Jung Y, Seo T (2024) Roseateles subflavus sp. nov. and Roseateles aquae sp. nov., isolated from artificial pond water and Roseateles violae sp. nov., isolated from a Viola mandshurica root. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.006426
Gomila M, Bowien B, Falsen E, Moore ER, Lalucat J (2008) Description of Roseateles aquatilis sp. nov. and Roseateles terrae sp. nov., in the class Betaproteobacteria, and emended description of the genus Roseateles. Int J Syst Evol Microbiol 58(Pt 1):6–11. https://doi.org/10.1099/ijs.0.65169-0
Xie CH, Yokota A (2005) Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 55(Pt 6):2419–2425. https://doi.org/10.1099/ijs.0.63733-0
Suyama T, Shigematsu T, Takaichi S, Nodasaka Y, Fujikawa S, Hosoya H, Tokiwa Y, Kanagawa T, Hanada S (1999) Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the beta-subclass of the Proteobacteria. Int J Syst Bacteriol 49(Pt 2):449–457. https://doi.org/10.1099/00207713-49-2-449
Rapala J, Berg KA, Lyra C, Niemi RM, Manz W, Suomalainen S, Paulin L, Lahti K (2005) Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int J Syst Evol Microbiol 55(Pt 4):1563–1568. https://doi.org/10.1099/ijs.0.63599-0
Gomila M, Pinhassi J, Falsen E, Moore ERB, Lalucat J (2010) Kinneretia asaccharophila gen nov, sp nov, isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int J Syst Evol Microbiol 60(Pt 4):809–814. https://doi.org/10.1099/ijs.0.011478-0
Amakata D, Matsuo Y, Shimono K, Park JK, Yun CS, Matsuda H, Yokota A, Kawamukai M (2005) Mitsuaria chitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the “Betaproteobacteria.” Int J Syst Evol Microbiol 55(Pt 5):1927–1932. https://doi.org/10.1099/ijs.0.63629-0
Liu Y, Du J, Pei T, Du H, Feng GD, Zhu H (2022) Genome-based taxonomic classification of the closest-to-Comamonadaceae group supports a new family Sphaerotilaceae fam. Nov. and taxonomic revisions. Syst Appl Microbiol 45(6):126352. https://doi.org/10.1016/j.syapm.2022.126352
So Y, Chhetri G, Kim I, Kang M, Kim J, Lee B, Jang W, Seo T (2022) Halomonas antri sp. nov., a carotenoid-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005272
Yang L, Huang HW, Wang Y, Kou YR, Yin M, Li Y, Wang XQ, Zhao GF, Zhu WY, Tang SK (2021) Paenibacillus turpanensis sp. nov., isolated from a salt lake of Turpan city in Xinjiang province, north-west China. Arch Microbiol 203(1):77–83. https://doi.org/10.1007/s00203-020-02003-w
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755
Article PubMed PubMed Central Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. https://doi.org/10.1093/nar/25.24.4876
Article PubMed PubMed Central Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.1093/SYSBIO/20.4.406
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/bf01734359
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054
Article PubMed PubMed Central Google Scholar
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/bf01731581
Lim HJ, Lee EH, Yoon Y, Chua B, Son A (2016) Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis. J Appl Microbiol 120(2):379–387. https://doi.org/10.1111/jam.13011
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272. https://doi.org/10.1101/gr.097261.109
Article PubMed PubMed Central Google Scholar
Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110(10):1281–1286. https://doi.org/10.1007/s10482-017-0844-4
Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60. https://doi.org/10.1186/1471-2105-14-60
Alanjary M, Steinke K, Ziemert N (2019) AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 47(W1):W276-w282. https://doi.org/10.1093/nar/gkz282
Article PubMed PubMed Central Google Scholar
Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16(1):157. https://doi.org/10.1186/s13059-015-0721-2
Article PubMed PubMed Central Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75
Article PubMed PubMed Central Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973. https://doi.org/10.1093/bioinformatics/btp348
Article PubMed PubMed Central Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587–589. https://doi.org/10.1038/nmeth.4285
Article PubMed PubMed Central Google Scholar
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T (2021) antiSMASH 60: improving cluster detection and comparison capabilities. Nucleic Acids Res 49(W1):W29-w35. https://doi.org/10.1093/nar/gkab335
Comments (0)