Rhizobacteria and Arbuscular Mycorrhizal Fungi (AMF) Community in Growth Management and Mitigating Stress in Millets: A Plant-Soil Microbe Symbiotic Relationship

Huang J, Yu H, Guan X et al (2016) Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–171. https://doi.org/10.1038/nclimate2837

Article  Google Scholar 

Satyavathi CT, Ambawat S, Khandelwal V, Srivastava RK (2021) Pearl millet: a climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Front Plant Sci. https://doi.org/10.3389/fpls.2021.659938

Article  PubMed  PubMed Central  Google Scholar 

Razzaq A, Wishart DS, Wani SH et al (2022) Advances in metabolomics-driven diagnostic breeding and crop improvement. Metabolites 12:511. https://doi.org/10.3390/metabo12060511

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kheya SA, Talukder SK, Datta P et al (2023) Millets: the future crops for the tropics—status, challenges and future prospects. Heliyon 9:e22123. https://doi.org/10.1016/j.heliyon.2023.e22123

Article  PubMed  PubMed Central  Google Scholar 

Dayakar Rao B, Bhaskarachary K, Arlene Christina GD et al (2017) Nutritional and health benefits of millets. ICAR-Indian Institute of Millets Research, Hyderabad, p 112

Google Scholar 

Patil SV, Kumudini BS (2019) Seed priming induced blast disease resistance in finger millet plants through phenylpropanoid metabolic pathway. Physiol Mol Plant Pathol 108:101428. https://doi.org/10.1016/j.pmpp.2019.101428

Article  CAS  Google Scholar 

Numan M, Serba DD, Ligaba-Osena A (2021) Alternative strategies for multi-stress tolerance and yield improvement in millets. Genes 12:739. https://doi.org/10.3390/genes12050739

Article  PubMed  PubMed Central  Google Scholar 

Dey S, Saxena A, Kumar Y et al (2022) Understanding the antinutritional factors and bioactive compounds of kodo millet (Paspalum scrobiculatum) and little millet (Panicum sumatrense). J Food Qual 2022:1–19. https://doi.org/10.1155/2022/1578448

Article  CAS  Google Scholar 

Sharma R, Sharma S, Dar BN, Singh B (2021) Millets as potential nutri-cereals: a review of nutrient composition, phytochemical profile and techno-functionality. Int J Food Sci Technol 56:3703–3718. https://doi.org/10.1111/ijfs.15044

Article  CAS  Google Scholar 

Konapur A, Gavaravarapu SR, Gupta S, Nair KM (2014) Millets in meeting nutrition security: issues and way forward for India. Indian J Nutr Diet 51:306–321

Google Scholar 

Nithiyanantham S, Kalaiselvi P, Mahomoodally MF et al (2019) Nutritional and functional roles of millets—a review. J Food Biochem. https://doi.org/10.1111/jfbc.12859

Article  PubMed  Google Scholar 

Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511. https://doi.org/10.1038/nature13855

Article  CAS  PubMed  Google Scholar 

Bertola M, Ferrarini A, Visioli G (2021) Improvement of soil microbial diversity through sustainable agricultural practices and its evaluation by -omics approaches: a perspective for the environment. Food Qual Hum Saf Microorg 9:1400. https://doi.org/10.3390/microorganisms9071400

Article  CAS  Google Scholar 

Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. MBio. https://doi.org/10.1128/mBio.01395-15

Article  PubMed  PubMed Central  Google Scholar 

Kang S-M, Khan AL, Waqas M et al (2019) Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J Plant Interact 14:416–423. https://doi.org/10.1080/17429145.2019.1640294

Article  CAS  Google Scholar 

Karnwal A, Shrivastava S, Al-Tawaha ARMS et al (2024) PGPR-mediated breakthroughs in plant stress tolerance for sustainable farming. J Plant Growth Regul 43:2955–2971. https://doi.org/10.1007/s00344-023-11013-z

Article  CAS  Google Scholar 

Kang S-M, Khan AL, Waqas M et al (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682. https://doi.org/10.1080/17429145.2014.894587

Article  CAS  Google Scholar 

Mofini M-T, Diedhiou AG, Simonin M et al (2022) Cultivated and wild pearl millet display contrasting patterns of abundance and co-occurrence in their root mycobiome. Sci Rep 12:207. https://doi.org/10.1038/s41598-021-04097-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spatafora JW, Chang Y, Benny GL et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046. https://doi.org/10.3852/16-042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muthukumar T, Koshila Ravi R (2023) Biodiversity of arbuscular mycorrhizal fungi and its impact on millets growth. Springer, Singapore, pp 35–82

Google Scholar 

Kuzyakov Y, Razavi BS (2019) Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem 135:343–360. https://doi.org/10.1016/j.soilbio.2019.05.011

Article  CAS  Google Scholar 

Liu S, He F, Kuzyakov Y et al (2022) Nutrients in the rhizosphere: a meta-analysis of content, availability, and influencing factors. Sci Total Environ 826:153908. https://doi.org/10.1016/j.scitotenv.2022.153908

Article  CAS  PubMed  Google Scholar 

Dheeman S, Baliyan N, Dubey RC et al (2020) Combined effects of rhizo-competitive rhizosphere and non-rhizosphere Bacillus in plant growth promotion and yield improvement of Eleusine coracana (Ragi). Can J Microbiol 66:111–124. https://doi.org/10.1139/cjm-2019-0103

Article  CAS  PubMed  Google Scholar 

Hu W, Strom N, Haarith D et al (2018) Mycobiome of cysts of the soybean cyst nematode under long term crop rotation. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00386

Article  PubMed  PubMed Central  Google Scholar 

Hu L, Robert CAM, Cadot S et al (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9:2738. https://doi.org/10.1038/s41467-018-05122-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ichihashi Y, Date Y, Shino A et al (2020) Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield. Proc Natl Acad Sci USA 117:14552–14560. https://doi.org/10.1073/pnas.1917259117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong C, Singh BK, He J-Z et al (2021) Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9:171. https://doi.org/10.1186/s40168-021-01118-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sirohi G, Upadhyay A, Srivastava PS, Srivastava S (2015) PGPR mediated zinc biofertilization of soil and its impact on growth and productivity of wheat. J Soil Sci Plant Nutr. https://doi.org/10.4067/S0718-95162015005000017

Article  Google Scholar 

Raghavendra M, Sharma MP, Ramesh A et al (2020) Soil health indicators: methods and applications. Soil analysis: recent trends and applications. Springer, Singapore, pp 221–253

Chapter  Google Scholar 

Choudhary R, Rawat G, Kumar V, Kumar V (2020) Diversity and function of microbes associated with rhizosphere of finger millet (Eleusine coracana). Springer, Singapore, pp 431–451

Google Scholar 

Xu L, Yi M, Yi H et al (2018) Manure and mineral fertilization change enzyme activity and bacterial community in millet rhizosphere soils. World J Microbiol Biotechnol 34:8. https://doi.org/10.1007/s11274-017-2394-3

Article  CAS  Google Scholar 

Debenport SJ, Assigbetse K, Bayala R et al (2015) Association of shifting populations in the root zone microbiome of millet with enhanced crop productivity in the Sahel region (Africa). Appl Environ Microbiol 81:2841–2851. https://doi.org/10.1128/AEM.04122-14

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif