Comparison of the effectiveness of sodium-tri-metaphosphate-treated varnish containing eggshell and membrane powder and bioactıve glass varnish with fluoride varnish in preventing erosion:

Lussi A, Kohler N, Zero D, et al. A comparison of the erosive potential of different beverages in primary and permanent teeth using an in vitro model. Eur J Oral Sci. 2000;108:110–4.

Article  CAS  Google Scholar 

Lussi A, Megert B, Shellis RP, et al. Analysis of the erosive effect of different dietary substances and medications. Br J Nutr. 2012;107:252–62.

Article  CAS  Google Scholar 

Lussi A, Jaeggi T. Chemical factors. Monogr Oral Sci. 2006;20:77–87.

Article  Google Scholar 

Ganss C, Klimek J, Giese K. Dental erosion in children and adolescents–a cross-sectional and longitudinal investigation using study models. Community Dent Oral Epidemiol. 2001;29:264–71.

Article  CAS  Google Scholar 

Silva JSA, Baratieri LN, Araujo E, et al. Dental erosion: understanding this pervasive condition. J Esthet Restor Dent. 2011;23:205–16.

Article  Google Scholar 

Donovan T, Nguyen-Ngoc C, Abd Alraheam I, et al. Contemporary diagnosis and management of dental erosion. J Esthet Restor Dent. 2021;33:78–87.

Article  Google Scholar 

Lussi A. Dental erosion—novel remineralizing agents in prevention or repair. Adv Dent Res. 2009;21:13–6.

Article  CAS  Google Scholar 

de Melo MAS, Passos VF, Alves JJ, et al. The effect of diode laser irradiation on dentin as a preventive measure against dental erosion: an in vitro study. Lasers Med Sci. 2011;26:615–21.

Article  Google Scholar 

Magalhães AC, Wiegand A, Rios D, et al. Fluoride in dental erosion. Fluoride Oral Environ. 2011. https://doi.org/10.1159/0003251670.

Article  Google Scholar 

Chersoni S, Bertacci A, Pashley DH, et al. In vivo effects of fluoride on enamel permeability. Clin Oral Investig. 2011;15:443–9.

Article  Google Scholar 

Rošin-Grget K. The cariostatic mechanisms of fluoride. Acta Medica Academica. 2013;42:179–88.

Article  Google Scholar 

de Leeuw NH, de Leeuw NH. Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride. J Phys Chem B. 2004;108:1809–11.

Article  Google Scholar 

Rahavi S, Monshi A, Emadi R, et al. Determination of crystallite size in synthetic and natural hydroxyapatite: a comparison between XRD and TEM results. Adv Mater Res. 2012;620:28–34.

Article  Google Scholar 

Roveri N, Battistella E, Bianchi CL, et al. Surface enamel remineralization: biomimetic apatite nanocrystals and fluoride ions different effects. J Nanomater. 2009;2009:1–9.

Article  Google Scholar 

Kimoto K, Okudera T, Okudera H, et al. Part I: crystalline fluorapatite-coated hydroxyapatite, physical properties. J Oral Implantol. 2011;37:27–33.

Article  Google Scholar 

Amaechi BT. Remineralization therapies for initial caries lesions. Current Oral Health Reports. 2015;2:95–101.

Article  Google Scholar 

Grewal N, Sharma N, Kaur N. Surface remineralization potential of nano-hydroxyapatite, sodium monofluorophosphate, and amine fluoride containing dentifrices on primary and permanent enamel surfaces: an in vitro study. J Indian Soc Pedod Prev Dent. 2018;36:158.

Article  Google Scholar 

Durmuş E, Kölüş T, Çoban E, et al. In vitro determination of the remineralizing potential and cytotoxicity of non-fluoride dental varnish containing bioactive glass, eggshell, and eggshell membrane. Eur Arch Paediatr Dent. 2023. https://doi.org/10.1007/s40368-023-00781-7.

Article  Google Scholar 

Bakry AS, Marghalani HY, Amin OA, et al. The effect of a bioglass paste on enamel exposed to erosive challenge. J Dent. 2014;42:1458–63.

Article  CAS  Google Scholar 

Bakry AS, Takahashi H, Otsuki M, et al. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Dent Mater. 2014;30:314–20.

Article  CAS  Google Scholar 

Mehta AB, Kumari V, Jose R, et al. Remineralization potential of bioactive glass and casein phosphopeptide-amorphous calcium phosphate on initial carious lesion: an in-vitro pH-cycling study. J Conserv Dent. 2014;17:3–7.

Article  Google Scholar 

Brauer DS, Karpukhina N, O’Donnell MD, et al. Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater. 2010;6:3275–82.

Article  CAS  Google Scholar 

Taha AA, Patel MP, Hill RG, et al. The effect of bioactive glasses on enamel remineralization: a systematic review. J Dent. 2017;67:9–17.

Article  CAS  Google Scholar 

Haghgoo R, Ahmadvand M, Moshaverinia S. Remineralizing effect of topical novamin and nanohydroxyapatite on caries-like lesions in primary teeth. J Contemp Dent Pract. 2016;17:645–9.

Article  Google Scholar 

Asmawati AA. Identification of inorganic compounds in eggshell as a dental remineralization material. J Dentomaxillofacial Sci. 2017;2:168.

Google Scholar 

Schaafsma A, Pakan I. Effect of a chicken egg shell powder enriched dairy product on bone mineral density in persons with osteoporosis or osteopenia. Nutrition. 1999;15:157.

CAS  Google Scholar 

Krompecher I. Antirachitic and anti-anemic effects of eggshell. Gyermekgyogyaszat. 1959;10:42–50.

CAS  Google Scholar 

Mony B. Effect of chicken egg shell powder solution on early enamel carious lesions: an ınvitro preliminary study. J Clın Dıag Res. 2015. https://doi.org/10.7860/jcdr/2015/11404.5656.

Article  Google Scholar 

Salah M, Kataia MM, Kataia EM, et al. Evaluation of eggshell powder as an experimental direct pulp capping material. Future Dental Journal. 2018;4:160–4.

Article  Google Scholar 

Cengiz ZO, Durmus E, Celik I, et al. Osteoproductivity of ınjectable bone grafts with and without ostrich eggshell membrane protein in rabbit femur. J Funct Biomater. 2024. https://doi.org/10.3390/jfb15070201.

Article  Google Scholar 

Haghgoo R, Yaberi M. A comparative study of the effect of nanohydroxyapatite and eggshell on erosive lesions of the enamel of permanent teeth following soft drink exposure: a randomized clinical trial. J Int Oral Health. 2018;10:176.

Article  Google Scholar 

Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res. 2019;53:284–95.

Article  CAS  Google Scholar 

Devadiga D, Shetty P, Hegde MN. Characterization of dynamic process of carious and erosive demineralization—an overview. J Conserv Dent. 2022;25:454–62.

Article  CAS  Google Scholar 

Sahiti JS, Krishna NV, Prasad SD, Kumar CS, Kumar SS, Babu KSC. Comparative evaluation of enamel microhardness after using two different remineralizing agents on artificially demineralized human enamel: an in vitro study. J Clin Transl Res. 2020;6:87–91.

CAS  Google Scholar 

Nawrocka A, Piwonski I, Sauro S, et al. Traditional microscopic techniques employed in dental adhesion research-applications and protocols of specimen preparation. Biosensors (Basel). 2021. https://doi.org/10.3390/bios11110408.

Article  Google Scholar 

Jabin Z, Nasim I, Vishnu Priya V, et al. Quantitative analysis and effect of SDF, APF, NaF on demineralized human primary enamel using SEM, XRD, and FTIR. Int J Clin Pediatr Dent. 2021;14:537–41.

Article  Google Scholar 

Joshi M, Joshi N, Kathariya R, et al. Techniques to evaluate dental erosion: a systematic review of literature. J Clin Diagn Res. 2016;10:ZE01–7.

Google Scholar 

de Carvalho Almança LC, et al. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev. 2018;53:747–69.

Article  Google Scholar 

Soares LES, do Espírito Santo AM, Brugnera A, et al. Effects of Er:YAG laser irradiation and manipulation treatments on dentin components, part 2: energy-dispersive X-ray fluorescence spectrometry study. J Biomed Opt. 2009;14:024002.

Article  Google Scholar 

Gal JY, Fovet Y, Adib-Yadzi M. About a synthetic saliva for in vitro studies. Talanta. 2001;53:1103–15.

Article  CAS  Google Scholar 

Gomes RNS, Bhattacharjee TT, Carvalho LFCS, et al. Fast monitoring of tooth erosion caused by medicaments used in the treatment of respiratory diseases by ATR-FTIR and μ-EDXRF analysis. Lasers Med Sci. 2017;32:2063–72.

Article  Google Scholar 

Nahorny S, Zanin H, Christino VA, et al. Multi-walled carbon nanotubes/graphene oxide hybrid and nanohydroxyapatite composite: a novel coating to prevent dentin erosion. Mater Sci Eng C Mater Biol Appl. 2017;79:199–208.

Article  CAS  Google Scholar 

Scatena C, Galafassi D, Gomes-Silva JM, et al. In vitro erosive effect of pediatric medicines on deciduous tooth enamel. Braz Dent J. 2014;25:22–7.

Article  Google Scholar 

Comments (0)

No login
gif