LED light promoted synthesis of silver nanoparticle with red cabbage extract in clinical conditions and its dental applications

Banerjee A, Frencken JE, Schwendicke F, Innes NPT. Contemporary operative caries management: consensus recommendations on minimally invasive caries removal. Br Dent J. 2017;223:215–22. https://doi.org/10.1038/sj.bdj.2017.672.

Article  CAS  PubMed  Google Scholar 

Warreth A. Dental Caries and Its Management. Int J Dent. 2023;2023:9365845. https://doi.org/10.1155/2023/9365845.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griffin SO, Oong E, Kohn W, et al. The effectiveness of sealants in managing caries lesions. J Dent Res. 2008;87:169–74. https://doi.org/10.1177/154405910808700211.

Article  CAS  PubMed  Google Scholar 

Mertz-Fairhurst EJ, Curtis JW, Ergle JW, Rueggeberg FA, Adair SM. Ultraconservative and cariostatic sealed restorations: Results at year 10. J Am Dent Assoc. 1998;129:55–66. https://doi.org/10.14219/jada.archive.1998.0022.

Article  CAS  PubMed  Google Scholar 

Oong EM, Griffin SO, Kohn WG, Gooch BF, Caufield PW. The effect of dental sealants on bacteria levels in caries lesions: a review of the evidence. J Am Dent Assoc. 2008. https://doi.org/10.14219/jada.archive.2008.0156.

Article  PubMed  Google Scholar 

Knutsson G, Jontell M, Bergenholtz G. Determination of plasma proteins in dentinal fluid from cavities prepared in healthy young human teeth. Arch Oral Biol. 1994;39:185–90. https://doi.org/10.1016/0003-9969(94)90043-4.

Article  CAS  PubMed  Google Scholar 

Paddick JS, Brailsford SR, Kidd EA, Beighton D. Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl Environ Microbiol. 2005;71:2467–72. https://doi.org/10.1128/AEM.71.5.2467-2472.2005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marggraf T, Ganas P, Paris S, Schwendicke F. Bacterial reduction in sealed caries lesions is strain-and material-specific. Sci Rep. 2018;8:3767. https://doi.org/10.1038/s41598-018-21842-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwass DR, Lyons KM, Love R, Tompkins GR, Meledandri CJ. Antimicrobial activity of a colloidal AgNP suspension demonstrated in vitro against monoculture biofilms: toward a novel tooth disinfectant for treating dental caries. Adv Dent Res. 2018;29:117–23. https://doi.org/10.1177/0022034517736495.

Article  CAS  PubMed  Google Scholar 

Sweet MJ, Singleton I. Silver nanoparticles: a microbial perspective. Adv Appl Microbiol. 2011;77:115–33. https://doi.org/10.1016/B978-0-12-387044-5.00005-4.

Article  CAS  PubMed  Google Scholar 

Kim KJ, Sung WS, Suh BK, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22:235–42. https://doi.org/10.1007/s10534-008-9159-2.

Article  CAS  PubMed  Google Scholar 

MacIntyre CR, Chughtai AA. A rapid systematic review of the efficacy of face masks and respirators against coronaviruses and other respiratory transmissible viruses for the community, healthcare workers and sick patients. Int J Nurs Stud. 2020;108: 103629. https://doi.org/10.1016/j.ijnurstu.2020.103629.

Article  PubMed  PubMed Central  Google Scholar 

Mikelonis AM, Rowles LS, Lawler DF. The effects of water chemistry on the detachment and dissolution of differently stabilized silver nanoparticles from ceramic membranes. Environ Sci-Water Res Technol. 2020;6:1347–56. https://doi.org/10.1039/c9ew01141b.

Article  CAS  Google Scholar 

Ocsoy I, Paret ML, Ocsoy MA, et al. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against. ACS Nano. 2013;7:8972–80. https://doi.org/10.1021/nn4034794.

Article  CAS  PubMed  Google Scholar 

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82. https://doi.org/10.1016/j.jcis.2004.02.012.

Article  CAS  PubMed  Google Scholar 

Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974–83.

Article  CAS  Google Scholar 

Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. Acs Sustain Chem Eng. 2013;1:591–602. https://doi.org/10.1021/sc300118u.

Article  CAS  Google Scholar 

Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9:385–406.

CAS  PubMed  PubMed Central  Google Scholar 

Ocsoy I, Tasdemir D, Mazicioglu S, et al. Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater Lett. 2018;212:45–50. https://doi.org/10.1016/j.matlet.2017.10.068.

Article  CAS  Google Scholar 

Some S, Sen IK, Mandal A, et al. Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Materials Research Express. 2018;6: 012001.

Article  Google Scholar 

Porter GC, Tompkins GR, Schwass DR, et al. Anti-biofilm activity of silver nanoparticle-containing glass ionomer cements. Dent Mater. 2020;36:1096–107. https://doi.org/10.1016/j.dental.2020.05.001.

Article  CAS  PubMed  Google Scholar 

Yin IX, Yu OY, Zhao IS, et al. Developing biocompatible silver nanoparticles using epigallocatechin gallate for dental use. Arch Oral Biol. 2019;102:106–12. https://doi.org/10.1016/j.archoralbio.2019.03.022.

Article  CAS  PubMed  Google Scholar 

Larje O, Larson RH. Reduction of dental caries in rats by intermittent feeding with sucrose substitutes. Arch Oral Biol. 1970;15:805–16. https://doi.org/10.1016/0003-9969(70)90153-6.

Article  CAS  PubMed  Google Scholar 

Rodrigues MC, Rolim WR, Viana MM, et al. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent. 2020;96: 103327. https://doi.org/10.1016/j.jdent.2020.103327.

Article  CAS  PubMed  Google Scholar 

Temur N, Gundes NS, Korkmaz B, Ozkaya ZA, Ocsoy I. 2024 Silver nanoparticles in dentistry. In: Silver Nanoparticles for Drug Delivery. Elsevier pp. 265–88

Ekrikaya S, Yilmaz E, Arslan S, et al. Dentin bond strength and antimicrobial activities of universal adhesives containing silver nanoparticles synthesized with Rosa canina extract. Clin Oral Investig. 2023;27:6891–902. https://doi.org/10.1007/s00784-023-05306-6.

Article  PubMed  Google Scholar 

Arslan S, Ekrikaya S, Ildiz N, Yusufbeyoglu S, Ocsoy I. Evaluation of the antibacterial activity of dental adhesive containing biogenic silver nanoparticles decorated nanographene oxide nanocomposites (Ag@nGO NCs) and effect on bond strength to dentine. Odontology. 2024;112:341–54. https://doi.org/10.1007/s10266-023-00836-7.

Article  CAS  PubMed  Google Scholar 

Ekrikaya S, Yilmaz E, Celik C, et al. Investigation of ellagic acid rich-berry extracts directed silver nanoparticles synthesis and their antimicrobial properties with potential mechanisms towards and. J Biotechnol. 2021;341:155–62. https://doi.org/10.1016/j.jbiotec.2021.09.020.

Article  CAS  PubMed  Google Scholar 

Demirbas A, Yilmaz V, Ildiz N, Baldemir A, Ocsoy I. Anthocyanins-rich berry extracts directed formation of Ag NPs with the investigation of their antioxidant and antimicrobial activities. J Mol Liq. 2017;248:1044–9. https://doi.org/10.1016/j.molliq.2017.10.130.

Article  CAS  Google Scholar 

Demirbas A, Welt BA, Ocsoy I. Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Mater Lett. 2016;179:20–3. https://doi.org/10.1016/j.matlet.2016.05.056.

Article  CAS 

Comments (0)

No login
gif