Banerjee A, Frencken JE, Schwendicke F, Innes NPT. Contemporary operative caries management: consensus recommendations on minimally invasive caries removal. Br Dent J. 2017;223:215–22. https://doi.org/10.1038/sj.bdj.2017.672.
Article CAS PubMed Google Scholar
Warreth A. Dental Caries and Its Management. Int J Dent. 2023;2023:9365845. https://doi.org/10.1155/2023/9365845.
Article CAS PubMed PubMed Central Google Scholar
Griffin SO, Oong E, Kohn W, et al. The effectiveness of sealants in managing caries lesions. J Dent Res. 2008;87:169–74. https://doi.org/10.1177/154405910808700211.
Article CAS PubMed Google Scholar
Mertz-Fairhurst EJ, Curtis JW, Ergle JW, Rueggeberg FA, Adair SM. Ultraconservative and cariostatic sealed restorations: Results at year 10. J Am Dent Assoc. 1998;129:55–66. https://doi.org/10.14219/jada.archive.1998.0022.
Article CAS PubMed Google Scholar
Oong EM, Griffin SO, Kohn WG, Gooch BF, Caufield PW. The effect of dental sealants on bacteria levels in caries lesions: a review of the evidence. J Am Dent Assoc. 2008. https://doi.org/10.14219/jada.archive.2008.0156.
Knutsson G, Jontell M, Bergenholtz G. Determination of plasma proteins in dentinal fluid from cavities prepared in healthy young human teeth. Arch Oral Biol. 1994;39:185–90. https://doi.org/10.1016/0003-9969(94)90043-4.
Article CAS PubMed Google Scholar
Paddick JS, Brailsford SR, Kidd EA, Beighton D. Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl Environ Microbiol. 2005;71:2467–72. https://doi.org/10.1128/AEM.71.5.2467-2472.2005.
Article CAS PubMed PubMed Central Google Scholar
Marggraf T, Ganas P, Paris S, Schwendicke F. Bacterial reduction in sealed caries lesions is strain-and material-specific. Sci Rep. 2018;8:3767. https://doi.org/10.1038/s41598-018-21842-8.
Article CAS PubMed PubMed Central Google Scholar
Schwass DR, Lyons KM, Love R, Tompkins GR, Meledandri CJ. Antimicrobial activity of a colloidal AgNP suspension demonstrated in vitro against monoculture biofilms: toward a novel tooth disinfectant for treating dental caries. Adv Dent Res. 2018;29:117–23. https://doi.org/10.1177/0022034517736495.
Article CAS PubMed Google Scholar
Sweet MJ, Singleton I. Silver nanoparticles: a microbial perspective. Adv Appl Microbiol. 2011;77:115–33. https://doi.org/10.1016/B978-0-12-387044-5.00005-4.
Article CAS PubMed Google Scholar
Kim KJ, Sung WS, Suh BK, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22:235–42. https://doi.org/10.1007/s10534-008-9159-2.
Article CAS PubMed Google Scholar
MacIntyre CR, Chughtai AA. A rapid systematic review of the efficacy of face masks and respirators against coronaviruses and other respiratory transmissible viruses for the community, healthcare workers and sick patients. Int J Nurs Stud. 2020;108: 103629. https://doi.org/10.1016/j.ijnurstu.2020.103629.
Article PubMed PubMed Central Google Scholar
Mikelonis AM, Rowles LS, Lawler DF. The effects of water chemistry on the detachment and dissolution of differently stabilized silver nanoparticles from ceramic membranes. Environ Sci-Water Res Technol. 2020;6:1347–56. https://doi.org/10.1039/c9ew01141b.
Ocsoy I, Paret ML, Ocsoy MA, et al. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against. ACS Nano. 2013;7:8972–80. https://doi.org/10.1021/nn4034794.
Article CAS PubMed Google Scholar
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82. https://doi.org/10.1016/j.jcis.2004.02.012.
Article CAS PubMed Google Scholar
Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974–83.
Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. Acs Sustain Chem Eng. 2013;1:591–602. https://doi.org/10.1021/sc300118u.
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9:385–406.
CAS PubMed PubMed Central Google Scholar
Ocsoy I, Tasdemir D, Mazicioglu S, et al. Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater Lett. 2018;212:45–50. https://doi.org/10.1016/j.matlet.2017.10.068.
Some S, Sen IK, Mandal A, et al. Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Materials Research Express. 2018;6: 012001.
Porter GC, Tompkins GR, Schwass DR, et al. Anti-biofilm activity of silver nanoparticle-containing glass ionomer cements. Dent Mater. 2020;36:1096–107. https://doi.org/10.1016/j.dental.2020.05.001.
Article CAS PubMed Google Scholar
Yin IX, Yu OY, Zhao IS, et al. Developing biocompatible silver nanoparticles using epigallocatechin gallate for dental use. Arch Oral Biol. 2019;102:106–12. https://doi.org/10.1016/j.archoralbio.2019.03.022.
Article CAS PubMed Google Scholar
Larje O, Larson RH. Reduction of dental caries in rats by intermittent feeding with sucrose substitutes. Arch Oral Biol. 1970;15:805–16. https://doi.org/10.1016/0003-9969(70)90153-6.
Article CAS PubMed Google Scholar
Rodrigues MC, Rolim WR, Viana MM, et al. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent. 2020;96: 103327. https://doi.org/10.1016/j.jdent.2020.103327.
Article CAS PubMed Google Scholar
Temur N, Gundes NS, Korkmaz B, Ozkaya ZA, Ocsoy I. 2024 Silver nanoparticles in dentistry. In: Silver Nanoparticles for Drug Delivery. Elsevier pp. 265–88
Ekrikaya S, Yilmaz E, Arslan S, et al. Dentin bond strength and antimicrobial activities of universal adhesives containing silver nanoparticles synthesized with Rosa canina extract. Clin Oral Investig. 2023;27:6891–902. https://doi.org/10.1007/s00784-023-05306-6.
Arslan S, Ekrikaya S, Ildiz N, Yusufbeyoglu S, Ocsoy I. Evaluation of the antibacterial activity of dental adhesive containing biogenic silver nanoparticles decorated nanographene oxide nanocomposites (Ag@nGO NCs) and effect on bond strength to dentine. Odontology. 2024;112:341–54. https://doi.org/10.1007/s10266-023-00836-7.
Article CAS PubMed Google Scholar
Ekrikaya S, Yilmaz E, Celik C, et al. Investigation of ellagic acid rich-berry extracts directed silver nanoparticles synthesis and their antimicrobial properties with potential mechanisms towards and. J Biotechnol. 2021;341:155–62. https://doi.org/10.1016/j.jbiotec.2021.09.020.
Article CAS PubMed Google Scholar
Demirbas A, Yilmaz V, Ildiz N, Baldemir A, Ocsoy I. Anthocyanins-rich berry extracts directed formation of Ag NPs with the investigation of their antioxidant and antimicrobial activities. J Mol Liq. 2017;248:1044–9. https://doi.org/10.1016/j.molliq.2017.10.130.
Demirbas A, Welt BA, Ocsoy I. Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Mater Lett. 2016;179:20–3. https://doi.org/10.1016/j.matlet.2016.05.056.
Comments (0)