Parveen S, Qahtani ASA, Halboub E, Hazzazi RAA, Madkhali IAH, Mughals AIH, et al. Periodontal-systemic disease: a study on medical practitioners’ knowledge and practice. Int Dent J. 2023;73(6):854–61. https://doi.org/10.1016/j.identj.2023.05.003.
Article PubMed PubMed Central Google Scholar
Bertolini M, Clark D. Periodontal disease as a model to study chronic inflammation in aging. Geroscience. 2024;46(4):3695–709. https://doi.org/10.1007/s11357-023-00835-0.
Silva N, Abusleme L, Bravo D, et al. Host response mechanisms in periodontal diseases. J Appl Oral Sci. 2015;23(3):329–55. https://doi.org/10.1590/1678-775720140259.
Article CAS PubMed PubMed Central Google Scholar
Nunes GP, Pirovani BO, Nunes LP, et al. Does oral lichen planus aggravate the state of periodontal disease? A systematic review and meta-analysis. Clin Oral Investig. 2022;26(4):3357–71. https://doi.org/10.1007/s00784-022-04387-z.
Hou W, Hu S, Su Z, et al. Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Med Chem. 2018;10(19):2253–64. https://doi.org/10.4155/fmc-2018-0172.
Article CAS PubMed Google Scholar
Ribeiro-Santos FR, Silva GGD, Petean IBF, et al. Periapical bone response to bacterial lipopolysaccharide is shifted upon cyclooxygenase blockage. J Appl Oral Sci. 2019;27: e20180641. https://doi.org/10.1590/1678-7757-2018-0641.
Article CAS PubMed PubMed Central Google Scholar
Darveau RP, Pham TT, Lemley K, Reife RA, Bainbridge BW, Coats SR, et al. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infect Immun. 2004;72(9):5041–51. https://doi.org/10.1128/IAI.72.9.5041-5051.2004.
Article CAS PubMed PubMed Central Google Scholar
Xiao Y, Yuan Y, Yang Y, Liu B, Ding Z, Luo J, et al. Reduces LPS-induced alveolar macrophage polarization and inflammation by inhibition of ferroptosis. Inflamm Res. 2023;72(10–11):1941–55. https://doi.org/10.1007/s00011-023-01785-1.
Article CAS PubMed Google Scholar
Li X, Qi H, Zhang X, Liang H, Zeng N. Jing-Fang n-butanol extract and its isolated JFNE-C inhibit ferroptosis and inflammation in LPS induced RAW264.7 macrophages via STAT3/p53/SLC7A11 signaling pathway. J Ethnopharmacol. 2023;15:316–116689. https://doi.org/10.1016/j.jep.2023.116689.
Sellani TA, Tomaz SL, Gonçalves JM, Lima A, de Amat Herbozo CC, Silva GN, et al. Macrophages, IL-10, and nitric oxide increase, induced by hyperglycemic conditions, impact the development of murine melanoma B16F10-Nex2. Nitric Oxide. 2024;148:1–12. https://doi.org/10.1016/j.niox.2024.04.007.
Article CAS PubMed Google Scholar
Hussain T, Tan B, Yin Y, Blachier F, Tossou MC, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev. 2016;2016:7432797. https://doi.org/10.1155/2016/7432797.
Article CAS PubMed PubMed Central Google Scholar
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67. https://doi.org/10.1089/ars.2012.5149.
Article CAS PubMed PubMed Central Google Scholar
Heo YJ, Lee N, Choi SE, Jeon JY, Han SJ, Kim DJ, et al. Amphiregulin induces iNOS and COX-2 expression through NF-κB and MAPK signaling in hepatic inflammation. Mediat Inflamm. 2023. https://doi.org/10.1155/2023/2364121.
Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000. https://doi.org/10.1161/ATVBAHA.110.207449.
Article CAS PubMed PubMed Central Google Scholar
Bayramoglu Z, Mokhtare B, Mendil AS, et al. Effect of taxifolin on methotrexate-induced oxidative and inflammatory oral mucositis in rats: biochemical and histopathological evaluation. J Appl Oral Sci. 2022;30: e20220115. https://doi.org/10.1590/1678-7757-2022-0115.
Article CAS PubMed PubMed Central Google Scholar
Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016. https://doi.org/10.1155/2016/5276130.
Article PubMed PubMed Central Google Scholar
Verma AR, Vijayakumar M, Mathela CS, Rao CV. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol. 2009;47(9):2196–201. https://doi.org/10.1016/j.fct.2009.06.005.
Article CAS PubMed Google Scholar
Taheri Y, Suleria HAR, Martins N, Sytar O, Beyatli A, Yeskaliyeva B, et al. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther. 2020;20(1):241. https://doi.org/10.1186/s12906-020-03033-z.
Article CAS PubMed PubMed Central Google Scholar
Tu YC, Wang YM, Yao LJ. Macrophage-targeting DNA nanomaterials: a future direction of biological therapy. Int J Nanomed. 2024;19:3641–55. https://doi.org/10.2147/IJN.S459288.PMID:38681094;PMCID:PMC11055528.
Rehman MU, Rather IA. Myricetin abrogates cisplatin-induced oxidative stress, inflammatory response, and goblet cell disintegration in colon of Wistar rats. Plants (Basel). 2019;9(1):28. https://doi.org/10.3390/plants9010028.
Article CAS PubMed Google Scholar
Giri SS, Sen SS, Sukumaran V, Park SC. Pinocembrin attenuates lipopolysaccharide-induced inflammatory responses in Labeo rohita macrophages via the suppression of the NF-κB signalling pathway. Fish Shellfish Immunol. 2016;56:459–66. https://doi.org/10.1016/j.fsi.2016.07.038. (Epub 2016 Aug 2).
Article CAS PubMed Google Scholar
Wang S, Li Z, Ma Y, Liu Y, Lin CC, Li S, et al. Immunomodulatory effects of green tea polyphenols. Molecules. 2021;26(12):3755. https://doi.org/10.3390/molecules26123755.
Article CAS PubMed PubMed Central Google Scholar
Huang ST, Liao JS, Fang HW, Lin CM. Synthesis and anti-inflammation evaluation of new C60 fulleropyrrolidines bearing biologically active xanthine. Bioorg Med Chem Lett. 2008;18(1):99–103. https://doi.org/10.1016/j.bmcl.2007.11.004.
Article CAS PubMed Google Scholar
Aono Y, Saito K, Kawashima H, Watanabe A, Kono T, Hashizume-Takizawa T, Okada H, Kosuge Y, Senpuku H, Waddington JL, Saigusa T. Lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli: Differential and interactive effects on novelty-induced hyperlocomotion, blood cytokine levels and TLR4-related processes. PLoS ONE. 2024;19(6): e0292830. https://doi.org/10.1371/journal.pone.0292830.
Article CAS PubMed PubMed Central Google Scholar
Rodas-Junco BA, Hernández-Solís SE, Serralta-Interian AA, Rueda-Gordillo F. Dental stem cells and lipopolysaccharides: a concise review. Int J Mol Sci. 2024;25(8):4338. https://doi.org/10.3390/ijms25084338.
Article CAS PubMed PubMed Central Google Scholar
Kwon JH, Kim SB, Park KH, Lee MW. Antioxidative and anti-inflammatory effects of phenolic compounds from the roots of ulmus macrocarpa. Arch Pharm Res. 2011;34(9):1459–66. https://doi.org/10.1007/s12272-011-0907-4. (Epub 2011 Oct 6).
Article CAS PubMed Google Scholar
Park MJ, Lee EK, Heo HS, Kim MS, Sung B, Kim MK, et al. The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways. J Med Food. 2009;12(2):351–8. https://doi.org/10.1089/jmf.2008.0006.
Comments (0)