Chaperone-Mediated Autophagy Reactivation Protects Against Severe Acute Pancreatitis-Associated Liver Injury Through Upregulating Keap1/Nrf2 Signaling Pathway and Inhibiting NLRP3 Inflammasome Activation

Boxhoorn, L., Voermans, R. P., Bouwense, S. A., Bruno, M. J., Verdonk, R. C., Boermeester, M. A., van Santvoort, H. C., & Besselink, M. G. (2020). Acute pancreatitis. The Lancet, 396(10252), 726–734. https://doi.org/10.1016/S0140-6736(20)31310-6.

Article  Google Scholar 

Habtezion, A., Gukovskaya, A. S., & Pandol, S. J. (2019). Acute pancreatitis: A multifaceted set of organelle and cellular interactions. Gastroenterology, 156(7), 1941–1950. https://doi.org/10.1053/j.gastro.2018.11.082.

Article  CAS  PubMed  Google Scholar 

Bawa, M., & Saraswat, V. A. (2013). Gut-liver axis: Role of inflammasomes. Journal of Clinical and Experimental Hepatology, 3(2), 141–149. https://doi.org/10.1016/j.jceh.2013.03.225.

Article  PubMed  PubMed Central  Google Scholar 

Komara, N. L., Paragomi, P., Greer, P. J., Wilson, A. S., Breze, C., Papachristou, G. I., & Whitcomb, D. C. (2020). Severe acute pancreatitis: Capillary permeability model linking systemic inflammation to multiorgan failure. American Journal of Physiology-Gastrointestinal and Liver Physiology, 319(5), G573–G583. https://doi.org/10.1152/ajpgi.00285.2020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ou, Z.-B., Miao, C.-M., Ye, M.-X., Xing, D.-P., He, K., Li, P.-Z., Zhu, R.-T., & Gong, J.-P. (2017). Investigation for role of tissue factor and blood coagulation system in severe acute pancreatitis and associated liver injury. Biomedicine & Pharmacotherapy, 85, 380–388. https://doi.org/10.1016/j.biopha.2016.11.039.

Article  CAS  Google Scholar 

Esrefoglu, M. (2012). Experimental and clinical evidence of antioxidant therapy in acute pancreatitis. World Journal of Gastroenterology, 18(39), 5533. https://doi.org/10.3748/wjg.v18.i39.5533.

Article  PubMed  PubMed Central  Google Scholar 

Liu, W., Du, J.-J., Li, Z.-H., Zhang, X.-Y., & Zuo, H.-D. (2021). Liver injury associated with acute pancreatitis: The current status of clinical evaluation and involved mechanisms. World Journal of Clinical Cases, 9(34), 10418–10429. https://doi.org/10.12998/wjcc.v9.i34.10418.

Article  PubMed  PubMed Central  Google Scholar 

Bardallo, G. R., Panisello-Roselló, A., Sanchez-Nuno, S., Alva, N., Roselló-Catafau, J., & Carbonell, T. (2022). Nrf2 and oxidative stress in liver ischemia/reperfusion injury. The FEBS journal, 289(18), 5463–5479. https://doi.org/10.1111/febs.16336.

Article  CAS  Google Scholar 

Kong, L., Zhang, H., Lu, C., Shi, K., Huang, H., Zheng, Y., Wang, Y., Wang, D., Wang, H., & Huang, W. (2021). AICAR, an AMP-activated protein kinase activator, ameliorates acute pancreatitis-associated liver injury partially through Nrf2-mediated antioxidant effects and inhibition of NLRP3 inflammasome activation. Frontiers in Pharmacology, 12, 724514. https://doi.org/10.3389/fphar.2021.724514.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Z., Zhong, H., Wei, J., Lin, S., Zong, Z., Gong, F., Huang, X., Sun, J., Li, P., Lin, H., Wei, B., & Chu, J. (2019). Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis. Arthritis Research & Therapy, 21(1), 300. https://doi.org/10.1186/s13075-019-2085-6.

Article  CAS  Google Scholar 

Swanson, K. V., Deng, M., & Ting, J. P.-Y. (2019). The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews. Immunology, 19(8), 477–489. https://doi.org/10.1038/s41577-019-0165-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuchitsu, Y., & Taguchi, T. (2024). Lysosomal microautophagy: An emerging dimension in mammalian autophagy. Trends in Cell Biology, 34(7), 606–616. https://doi.org/10.1016/j.tcb.2023.11.005.

Article  CAS  PubMed  Google Scholar 

Yao, R., & Shen, J. (2023). Chaperone‐mediated autophagy: Molecular mechanisms, biological functions, and diseases. MedComm, 4(5), e347. https://doi.org/10.1002/mco2.347.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuervo, A. M., & Dice, J. F. (2000). Unique properties of lamp2a compared to other lamp2 isoforms. Journal of Cell Science, 113(Pt 24), 4441–4450. https://doi.org/10.1242/jcs.113.24.4441.

Article  CAS  PubMed  Google Scholar 

Huang, J., & Wang, J. (2025). Selective protein degradation through chaperone‑mediated autophagy: Implications for cellular homeostasis and disease (Review). Molecular Medicine Reports, 31(1), 13. https://doi.org/10.3892/mmr.2024.13378.

Article  CAS  PubMed  Google Scholar 

Anguiano, J., Garner, T. P., Mahalingam, M., Das, B. C., Gavathiotis, E., & Cuervo, A. M. (2013). Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives. Nature Chemical Biology, 9(6), 374–382. https://doi.org/10.1038/nchembio.1230.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho, P. W.-L., Leung, C.-T., Liu, H., Pang, S. Y.-Y., Lam, C. S.-C., Xian, J., Li, L., Kung, M. H.-W., Ramsden, D. B., & Ho, S.-L. (2020). Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: Role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy, 16(2), 347–370. https://doi.org/10.1080/15548627.2019.1603545.

Article  CAS  PubMed  Google Scholar 

Kaushik, S., & Cuervo, A. M. (2018). The coming of age of chaperone-mediated autophagy. Nature Reviews. Molecular Cell Biology, 19(6), 365–381. https://doi.org/10.1038/s41580-018-0001-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le, S., Fu, X., Pang, M., Zhou, Y., Yin, G., Zhang, J., & Fan, D. (2022). The antioxidative role of chaperone-mediated autophagy as a downstream regulator of oxidative stress in human diseases. Technology in Cancer Research & Treatment, 21, 153303382211141. https://doi.org/10.1177/15330338221114178.

Article  CAS  Google Scholar 

Schneider, J. L., Suh, Y., & Cuervo, A. M. (2014). Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metabolism, 20(3), 417–432. https://doi.org/10.1016/j.cmet.2014.06.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tasset, I., & Cuervo, A. M. (2016). Role of chaperone-mediated autophagy in metabolism. The FEBS journal, 283(13), 2403–2413. https://doi.org/10.1111/febs.13677.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, D., Li, C., Jiang, P., Jiang, Y., Wang, J., & Zhang, D. (2021). Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Digestive Diseases and Sciences, 66(2), 483–492. https://doi.org/10.1007/s10620-020-06225-2.

Article  CAS  PubMed  Google Scholar 

Lee, W., Kim, H. Y., Choi, Y.-J., Jung, S.-H., Nam, Y. A., Zhang, Y., Yun, S. H., Chang, T.-S., & Lee, B.-H. (2022). SNX10-mediated degradation of LAMP2A by NSAIDs inhibits chaperone-mediated autophagy and induces hepatic lipid accumulation. Theranostics, 12(5), 2351–2369. https://doi.org/10.7150/thno.70692.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong, R.-F., Qin C.-J., Yin, Y., Han, L.-L., Xiao, C.-M., Wang, K.-D., Wei, R.-Y., Xia, Y.-Z., & Kong, L.-Y. (2023). Discovery of a potent inhibitor of chaperone‐mediated autophagy that targets the HSC70–LAMP2A interaction in non‐small cell lung cancer cells. British Journal of Pharmacology, https://doi.org/10.1111/bph.16165.

Zhang, J., Johnson, J. L., He, J., Napolitano, G., Ramadass, M., Rocca, C., Kiosses, W. B., Bucci, C., Xin, Q., Gavathiotis, E., Cuervo, A. M., Cherqui, S., & Catz, S. D. (2017). Cystinosin, the small GTPase Rab11, and the Rab7 effector RILP regulate intracellular trafficking of the chaperone-mediated autophagy receptor LAMP2A. Journal of Biological Chemistry, 292(25), 10328–10346. https://doi.org/10.1074/jbc.M116.764076.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mei, Q., Deng, G., Huang, Z., Yin, Y., Li, C., Hu, J., Fu, Y., Wang, X., & Zeng, Y. (2020). Porous COS@SiO2 nanocomposites ameliorate severe acute pancreatitis and associated lung injury by regulating the Nrf2 signaling pathway in mice. Frontiers in Chemistry, 8, 720. https://doi.org/10.3389/fchem.2020.00720.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rongione, A. J., Kusske, A. M., Kwan, K., Ashley, S. W., Reber, H. A., & McFadden, D. W. (1997). Interleukin 10 reduces the severity of acute pancreatitis in rats. Gastroenterology, 112(3), 960–967. https://doi.org/10.1053/gast.1997.v112.pm9041259.

Comments (0)

No login
gif