Zambrano, E., Ibáñez, C., Martínez-Samayoa, P. M., Lomas-Soria, C., Durand-Carbajal, M., & Rodríguez-González, G. L. (2016). Maternal obesity: Lifelong metabolic outcomes for offspring from poor developmental trajectories during the perinatal period. Archives of Medical Research, 47, 1–12.
Godfrey, K. M., Reynolds, R. M., Prescott, S. L., Nyirenda, M., Jaddoe, V. W., Eriksson, J. G., & Broekman, B. F. (2017). Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes and Endocrinology, 5, 53–64.
De Los Santos, S., Reyes-Castro, L. A., Coral-Vázquez, R. M., Méndez, J. P., Leal-García, M., Zambrano, E., & Canto, P. (2020). (-)-Epicatechin reduces adiposity in male offspring of obese rats. Journal of Developmental Origins of Health and Disease, 11, 37–43.
Dearden, L., & Ozanne, S. E. (2023). Early life impacts of maternal obesity: a window of opportunity to improve the health of two generations. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 378, 20220222.
Article CAS PubMed PubMed Central Google Scholar
Shamah-Levy, T., Romero-Martínez, M., Barrientos-Gutiérrez, T., Cuevas-Nasu, L., Bautista-Arredondo, S., Colchero, M. A., Gaona-Pineda, E. B., Lazcano-Ponce, E., Martínez-Barnetche, J., Alpuche-Arana, C., & Rivera-Dommarco, J. (2022). Encuesta Nacional de Salud y nutrición 2021 sobre Covid-19. Resultados nacionales. Cuernavaca, México: Instituto Nacional de Salud Pública.
Buckingham, M. (2001). Skeletal muscle formation in vertebrates. Current Opinion in Genetics and Development, 11, 440–448.
Article CAS PubMed Google Scholar
Perry, R. L., & Rudnick, M. A. (2000). Molecular mechanisms regulating myogenic determination and differentiation. Frontiers in Bioscience, 5, D750–D767.
Article CAS PubMed Google Scholar
Bayol, S. A., Simbi, B. H., & Stickland, N. C. (2005). A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. The Journal of Physiology, 567, 951–961.
Article CAS PubMed PubMed Central Google Scholar
De los Santos, S., Coral-Vázquez, R. M., Menjivar, M., Granados-Silvestre, M. A., Tejeda, M. E., Reyes-Castro, L. A., Méndez, J. P., Zambrano, E., & Canto, P. (2019). (-)-Epicatechin modifies body composition of the male offspring of obese rats. Journal of Functional Foods, 58, 367–373.
Mikovic, J., Brightwell, C., Lindsay, A., Wen, Y., Kowalski, G., Russell, A. P., Fry, C. S., & Lamon, S. (2020). An obesogenic maternal environment impairs mouse growth patterns, satellite cell activation, and markers of postnatal myogenesis. American Journal of Physiology - Endocrinology and Metabolism, 319, E1008–E1018.
Article CAS PubMed Google Scholar
O’Rourke, J. R., Georges, S. A., Seay, H. R., Tapscott, S. J., McManus, M. T., Goldhamer, D. J., Swanson, M. S., & Harfe, B. D. (2007). Essential role for Dicer during skeletal muscle development. Developmental Biology, 311, 359–368.
Horak, M., Novak, J., & Bienertova-Vasku, J. (2016). Muscle-specific microRNAs in skeletal muscle development. Developmental Biology, 410, 1–13.
Article CAS PubMed Google Scholar
Jing, Y., Gan, M., Xie, Z., Ma, J., Chen, L., Zhang, S., Zhao, Y., Niu, L., Wang, Y., Zhu, L., & Shen, L. (2023). Characteristics of microRNAs in skeletal muscle of intrauterine growth-restricted pigs. Genes, 14, 1372.
Article CAS PubMed PubMed Central Google Scholar
Harnly, J. M., Doherty, R. F., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Bhagwat, S., & Gebhardt, S. (2006). Flavonoid content of U.S. fruits, vegetables, and nuts. Journal of Agricultural and Food Chemistry, 54, 9966–9977.
Article CAS PubMed Google Scholar
Ramirez-Sanchez, I., De los Santos, S., Gonzalez-Basurto, S., Canto, P., Mendoza-Lorenzo, P., Palma-Flores, C., Ceballos-Reyes, G., Villarreal, F., Zentella-Dehesa, A., & Coral-Vazquez, R. (2014). Epicatechin improves mitochondrial-related protein levels and ameliorates oxidative stress in dystrophic δ-sarcoglycan null mouse striated muscle. The FEBS journal, 281, 5567–5580.
Article CAS PubMed PubMed Central Google Scholar
McDonald, C. M., Ramirez-Sanchez, I., Oskarsson, B., Joyce, N., Aguilar, C., Nicorici, A., Dayan, J., Goude, E., Abresch, R. T., Villarreal, F., Ceballos, G., Perkins, G., Dugar, S., Schreiner, G., & Henricson, E. K. (2021). (-)-Epicatechin induces mitochondrial biogenesis and markers of muscle regeneration in adults with Becker muscular dystrophy. Muscle and Nerve, 63, 239–249.
Article CAS PubMed Google Scholar
Ramírez-Ramírez, M., Fernández-Valverde, F., Reséndiz-García, A., Martínez-Damas, M. G., Cano-Martínez, L. J., Zentella-Dehesa, A., & Coral-Vázquez, R. M. (2022). (-)-Epicatechin improves Tibialis anterior muscle repair in CD1 mice with BaCl2-induced damage. The Journal of Nutritional Biochemistry, 107, 109069.
Munguia, L., Ramirez-Sanchez, I., Meaney, E., Villarreal, F., Ceballos, G., & Najera, N. (2020). Flavonoids from dark chocolate and (-)-epicatechin ameliorate high-fat diet-induced decreases in mobility and muscle damage in aging mice. Food Bioscience, 37, 100710.
Article CAS PubMed PubMed Central Google Scholar
Samani, A., Hightower, R. M., Reid, A. L., English, K. G., Lopez, M. A., Doyle, J. S., Conklin, M. J., Schneider, D. A., Bamman, M. M., Widrick, J. J., Crossman, D. K., Xie, M., Jee, D., Lai, E. C., & Alexander, M. S. (2022). miR-486 is essential for muscle function and suppresses a dystrophic transcriptome. Life Science Alliance, 5, e202101215.
Article CAS PubMed PubMed Central Google Scholar
Zhang, D., Yin, L., Lin, Z., Yu, C., Li, J., Ren, P., Yang, C., Qiu, M., & Liu, Y. (2023). miR-136-5p/FZD4 axis is critical for Wnt signaling-mediated myogenesis and skeletal muscle regeneration. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.31046.
Liu, N., Williams, A. H., Maxeiner, J. M., Bezprozvannaya, S., Shelton, J. M., Richardson, J. A., Bassel-Duby, R., & Olson, E. N. (2012). microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. The Journal of Clinical Investigation, 122, 2054–2065.
Article CAS PubMed PubMed Central Google Scholar
Dmitriev, P., Barat, A., Polesskaya, A., O’Connell, M. J., Robert, T., Dessen, P., Walsh, T. A., Lazar, V., Turki, A., Carnac, G., Laoudj-Chenivesse, D., Lipinski, M., & Vassetzky, Y. S. (2013). Simultaneous miRNA and mRNA transcriptome profiling of human myoblasts reveals a novel set of myogenic differentiation-associated miRNAs and their target genes. BMC Genomics, 14, 265.
Article CAS PubMed PubMed Central Google Scholar
Gentile, A. M., Lhamyani, S., Coín-Aragüez, L., Clemente-Postigo, M., Oliva Olivera, W., Romero-Zerbo, S. Y., García-Serrano, S., García-Escobar, E., Zayed, H., Doblado, E., Bermúdez-Silva, F. J., Murri, M., Tinahones, F. J., & El Bekay, R. (2019). miR-20b, miR-296, and Let-7f expression in human adipose tissue is related to obesity and type 2 diabetes. Obesity, 27, 245–254.
Article CAS PubMed Google Scholar
Guerrieri, D., Moon, H. Y., & van Praag, H. (2017). Exercise in a pill: The latest on exercise-mimetics. Brain Plasticity, 2, 153–169.
Article PubMed PubMed Central Google Scholar
Gutierrez-Salmean, G., Ciaraldi, T. P., Nogueira, L., Barboza, J., Taub, P. R., Hogan, M. C., Henry, R. R., Meaney, E., Villarreal, F., Ceballos, G., & Ramirez-Sanchez, I. (2014). Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. The Journal of Nutritional Biochemistry, 25, 91–94.
Article CAS PubMed Google Scholar
De Los Santos, S., García-Pérez, V., Hernández-Reséndiz, S., Palma-Flores, C., González-Gutiérrez, C. J., Zazueta, C., Canto, P., & Coral-Vázquez, R. M. (2017). (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Molecular Nutrition and Food Research. 61. https://doi.org/10.1002/mnfr.201600343.
Cheng H., Xu N., Zhao W., Su J., Liang M., Xie Z., Wu X., Li Q. (2017). (-)-Epicatechin regulates blood lipids and attenuates hepatic steatosis in rats fed high-fat diet. Molecular Nutrition and Food Research. 61, https://doi.org/10.1002/mnfr.201700303.
Palma-Flores, C., Zárate-Segura, P. B., Hernández-Hernández, J. M., de Los Santos, S., Tejeda-Gómez, A. S., Cano-Martínez, L. J., Canto, P., Garcia-Rebollar, J. O., & Coral-Vázquez, R. M. (2023). (-)-Epicatechin modulates the expression of myomiRs implicated in exercise response in mouse skeletal muscle. Gene, 849, 146907.
Article CAS PubMed Google Scholar
Tokar, T., Pastrello, C., Rossos, A. E. M., Abovsky, M., Hauschild, A. C., Tsay, M., Lu, R., & Jurisica, I. (2018). mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Research, 46, D360–D370.
Article CAS PubMed Google Scholar
Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36, 2628–2629.
Article CAS PubMed Google Scholar
Bayol, S. A., Macharia, R., Farrington, S. J., Simbi, B. H., & Stickland, N. C. (2009). Evidence that a maternal “junk food” diet during pregnancy and lactation can reduce muscle force in offspring. European Journal of Nutrition, 48, 62–65.
Comments (0)