Effects of Epicatechin on the Expression of MyomiRs−31, −133, −136, −206, −296, and −486 in the Skeletal Muscle of the Offspring of Obese Mothers

Zambrano, E., Ibáñez, C., Martínez-Samayoa, P. M., Lomas-Soria, C., Durand-Carbajal, M., & Rodríguez-González, G. L. (2016). Maternal obesity: Lifelong metabolic outcomes for offspring from poor developmental trajectories during the perinatal period. Archives of Medical Research, 47, 1–12.

Article  PubMed  Google Scholar 

Godfrey, K. M., Reynolds, R. M., Prescott, S. L., Nyirenda, M., Jaddoe, V. W., Eriksson, J. G., & Broekman, B. F. (2017). Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes and Endocrinology, 5, 53–64.

Article  PubMed  Google Scholar 

De Los Santos, S., Reyes-Castro, L. A., Coral-Vázquez, R. M., Méndez, J. P., Leal-García, M., Zambrano, E., & Canto, P. (2020). (-)-Epicatechin reduces adiposity in male offspring of obese rats. Journal of Developmental Origins of Health and Disease, 11, 37–43.

Article  Google Scholar 

Dearden, L., & Ozanne, S. E. (2023). Early life impacts of maternal obesity: a window of opportunity to improve the health of two generations. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 378, 20220222.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shamah-Levy, T., Romero-Martínez, M., Barrientos-Gutiérrez, T., Cuevas-Nasu, L., Bautista-Arredondo, S., Colchero, M. A., Gaona-Pineda, E. B., Lazcano-Ponce, E., Martínez-Barnetche, J., Alpuche-Arana, C., & Rivera-Dommarco, J. (2022). Encuesta Nacional de Salud y nutrición 2021 sobre Covid-19. Resultados nacionales. Cuernavaca, México: Instituto Nacional de Salud Pública.

Buckingham, M. (2001). Skeletal muscle formation in vertebrates. Current Opinion in Genetics and Development, 11, 440–448.

Article  CAS  PubMed  Google Scholar 

Perry, R. L., & Rudnick, M. A. (2000). Molecular mechanisms regulating myogenic determination and differentiation. Frontiers in Bioscience, 5, D750–D767.

Article  CAS  PubMed  Google Scholar 

Bayol, S. A., Simbi, B. H., & Stickland, N. C. (2005). A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. The Journal of Physiology, 567, 951–961.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De los Santos, S., Coral-Vázquez, R. M., Menjivar, M., Granados-Silvestre, M. A., Tejeda, M. E., Reyes-Castro, L. A., Méndez, J. P., Zambrano, E., & Canto, P. (2019). (-)-Epicatechin modifies body composition of the male offspring of obese rats. Journal of Functional Foods, 58, 367–373.

Article  Google Scholar 

Mikovic, J., Brightwell, C., Lindsay, A., Wen, Y., Kowalski, G., Russell, A. P., Fry, C. S., & Lamon, S. (2020). An obesogenic maternal environment impairs mouse growth patterns, satellite cell activation, and markers of postnatal myogenesis. American Journal of Physiology - Endocrinology and Metabolism, 319, E1008–E1018.

Article  CAS  PubMed  Google Scholar 

O’Rourke, J. R., Georges, S. A., Seay, H. R., Tapscott, S. J., McManus, M. T., Goldhamer, D. J., Swanson, M. S., & Harfe, B. D. (2007). Essential role for Dicer during skeletal muscle development. Developmental Biology, 311, 359–368.

Article  PubMed  Google Scholar 

Horak, M., Novak, J., & Bienertova-Vasku, J. (2016). Muscle-specific microRNAs in skeletal muscle development. Developmental Biology, 410, 1–13.

Article  CAS  PubMed  Google Scholar 

Jing, Y., Gan, M., Xie, Z., Ma, J., Chen, L., Zhang, S., Zhao, Y., Niu, L., Wang, Y., Zhu, L., & Shen, L. (2023). Characteristics of microRNAs in skeletal muscle of intrauterine growth-restricted pigs. Genes, 14, 1372.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harnly, J. M., Doherty, R. F., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Bhagwat, S., & Gebhardt, S. (2006). Flavonoid content of U.S. fruits, vegetables, and nuts. Journal of Agricultural and Food Chemistry, 54, 9966–9977.

Article  CAS  PubMed  Google Scholar 

Ramirez-Sanchez, I., De los Santos, S., Gonzalez-Basurto, S., Canto, P., Mendoza-Lorenzo, P., Palma-Flores, C., Ceballos-Reyes, G., Villarreal, F., Zentella-Dehesa, A., & Coral-Vazquez, R. (2014). Epicatechin improves mitochondrial-related protein levels and ameliorates oxidative stress in dystrophic δ-sarcoglycan null mouse striated muscle. The FEBS journal, 281, 5567–5580.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDonald, C. M., Ramirez-Sanchez, I., Oskarsson, B., Joyce, N., Aguilar, C., Nicorici, A., Dayan, J., Goude, E., Abresch, R. T., Villarreal, F., Ceballos, G., Perkins, G., Dugar, S., Schreiner, G., & Henricson, E. K. (2021). (-)-Epicatechin induces mitochondrial biogenesis and markers of muscle regeneration in adults with Becker muscular dystrophy. Muscle and Nerve, 63, 239–249.

Article  CAS  PubMed  Google Scholar 

Ramírez-Ramírez, M., Fernández-Valverde, F., Reséndiz-García, A., Martínez-Damas, M. G., Cano-Martínez, L. J., Zentella-Dehesa, A., & Coral-Vázquez, R. M. (2022). (-)-Epicatechin improves Tibialis anterior muscle repair in CD1 mice with BaCl2-induced damage. The Journal of Nutritional Biochemistry, 107, 109069.

Article  PubMed  Google Scholar 

Munguia, L., Ramirez-Sanchez, I., Meaney, E., Villarreal, F., Ceballos, G., & Najera, N. (2020). Flavonoids from dark chocolate and (-)-epicatechin ameliorate high-fat diet-induced decreases in mobility and muscle damage in aging mice. Food Bioscience, 37, 100710.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samani, A., Hightower, R. M., Reid, A. L., English, K. G., Lopez, M. A., Doyle, J. S., Conklin, M. J., Schneider, D. A., Bamman, M. M., Widrick, J. J., Crossman, D. K., Xie, M., Jee, D., Lai, E. C., & Alexander, M. S. (2022). miR-486 is essential for muscle function and suppresses a dystrophic transcriptome. Life Science Alliance, 5, e202101215.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, D., Yin, L., Lin, Z., Yu, C., Li, J., Ren, P., Yang, C., Qiu, M., & Liu, Y. (2023). miR-136-5p/FZD4 axis is critical for Wnt signaling-mediated myogenesis and skeletal muscle regeneration. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.31046.

Liu, N., Williams, A. H., Maxeiner, J. M., Bezprozvannaya, S., Shelton, J. M., Richardson, J. A., Bassel-Duby, R., & Olson, E. N. (2012). microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. The Journal of Clinical Investigation, 122, 2054–2065.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dmitriev, P., Barat, A., Polesskaya, A., O’Connell, M. J., Robert, T., Dessen, P., Walsh, T. A., Lazar, V., Turki, A., Carnac, G., Laoudj-Chenivesse, D., Lipinski, M., & Vassetzky, Y. S. (2013). Simultaneous miRNA and mRNA transcriptome profiling of human myoblasts reveals a novel set of myogenic differentiation-associated miRNAs and their target genes. BMC Genomics, 14, 265.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gentile, A. M., Lhamyani, S., Coín-Aragüez, L., Clemente-Postigo, M., Oliva Olivera, W., Romero-Zerbo, S. Y., García-Serrano, S., García-Escobar, E., Zayed, H., Doblado, E., Bermúdez-Silva, F. J., Murri, M., Tinahones, F. J., & El Bekay, R. (2019). miR-20b, miR-296, and Let-7f expression in human adipose tissue is related to obesity and type 2 diabetes. Obesity, 27, 245–254.

Article  CAS  PubMed  Google Scholar 

Guerrieri, D., Moon, H. Y., & van Praag, H. (2017). Exercise in a pill: The latest on exercise-mimetics. Brain Plasticity, 2, 153–169.

Article  PubMed  PubMed Central  Google Scholar 

Gutierrez-Salmean, G., Ciaraldi, T. P., Nogueira, L., Barboza, J., Taub, P. R., Hogan, M. C., Henry, R. R., Meaney, E., Villarreal, F., Ceballos, G., & Ramirez-Sanchez, I. (2014). Effects of (-)-epicatechin on molecular modulators of skeletal muscle growth and differentiation. The Journal of Nutritional Biochemistry, 25, 91–94.

Article  CAS  PubMed  Google Scholar 

De Los Santos, S., García-Pérez, V., Hernández-Reséndiz, S., Palma-Flores, C., González-Gutiérrez, C. J., Zazueta, C., Canto, P., & Coral-Vázquez, R. M. (2017). (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Molecular Nutrition and Food Research. 61. https://doi.org/10.1002/mnfr.201600343.

Cheng H., Xu N., Zhao W., Su J., Liang M., Xie Z., Wu X., Li Q. (2017). (-)-Epicatechin regulates blood lipids and attenuates hepatic steatosis in rats fed high-fat diet. Molecular Nutrition and Food Research. 61, https://doi.org/10.1002/mnfr.201700303.

Palma-Flores, C., Zárate-Segura, P. B., Hernández-Hernández, J. M., de Los Santos, S., Tejeda-Gómez, A. S., Cano-Martínez, L. J., Canto, P., Garcia-Rebollar, J. O., & Coral-Vázquez, R. M. (2023). (-)-Epicatechin modulates the expression of myomiRs implicated in exercise response in mouse skeletal muscle. Gene, 849, 146907.

Article  CAS  PubMed  Google Scholar 

Tokar, T., Pastrello, C., Rossos, A. E. M., Abovsky, M., Hauschild, A. C., Tsay, M., Lu, R., & Jurisica, I. (2018). mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Research, 46, D360–D370.

Article  CAS  PubMed  Google Scholar 

Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36, 2628–2629.

Article  CAS  PubMed  Google Scholar 

Bayol, S. A., Macharia, R., Farrington, S. J., Simbi, B. H., & Stickland, N. C. (2009). Evidence that a maternal “junk food” diet during pregnancy and lactation can reduce muscle force in offspring. European Journal of Nutrition, 48, 62–65.

Article  PubMed 

Comments (0)

No login
gif