Passion Fruit Seed Extract Attenuates Hepatic Steatosis in Oleic Acid-Treated HepG2 Cells through Modulation of ERK1/2 and Akt Signaling Pathways

Nassir, F., Rector, R. S., Hammoud, G. M., & Ibdah, J. A. (2015). Pathogenesis and prevention of hepatic steatosis. Gastroenterology & Hepatology, 11(3), 167–175.

Google Scholar 

Takaki, A., Kawai, D., & Yamamoto, K. (2013). Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). International Journal of Molecular Sciences, 14(10), 20704–20728.

Article  Google Scholar 

Wiering, L., Subramanian, P., & Hammerich, L. (2023). Hepatic stellate cells: Dictating outcome in nonalcoholic fatty liver disease. Cellular and Molecular Gastroenterology and Hepatology, 15(6), 1277–1292.

Article  CAS  Google Scholar 

Angelico, F., Burattin, M., Alessandri, C., Del Ben, M., & Lirussi, F. (2007). Drugs improving insulin resistance for non-alcoholic fatty liver disease and/or non-alcoholic steatohepatitis. Cochrane Database of Systematic Reviews, 1, CD005166.

Google Scholar 

Lirussi, F., Azzalini, L., Orando, S., Orlando, R., & Angelico, F. (2007). Antioxidant supplements for non‐alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database of Systematic Reviews, 1, CD004996.

Google Scholar 

He, X., Luan, F., Yang, Y., Wang, Z., Zhao, Z., Fang, J., Wang, M., Zuo, M., & Li, Y. (2020). Passiflora edulis: An insight into current researches on phytochemistry and pharmacology. Frontiers in Pharmacology, 11, 617.

Article  CAS  Google Scholar 

Sukketsiri, W., Daodee, S., Parhira, S., Malakul, W., Tunsophon, S., Sutthiwong, N., Tanasawet, S., & Chonpathompikunlert, P. (2023). Chemical characterization of Passiflora edulis extracts and their in vitro antioxidant, anti-inflammatory, anti-lipid activities, and ex-vivo vasodilation effect. Journal of King Saud University-Science, 35(1), 102431.

Article  Google Scholar 

Chusongdam, S., Woonnoi, W., Moolsup, F., Aenglong, C., Chonpathompikunlert, P., Tanasawet, S., Saetan, J., & Sukketsiri, W. (2024). Suppression of inflammation in adipocyte‐macrophage coculture by passion fruit seed extract: Insights into the p38 and NF‐ҡB pathway. Advances in Pharmacological and Pharmaceutical Sciences, 2024(1), 7990333.

Google Scholar 

Dos Santos, F. A., Xavier, J. A., da Silva, F. C., Merlin, J. J., Goulart, M. O., & Rupasinghe, H. V. (2022). Antidiabetic, antiglycation, and antioxidant activities of ethanolic seed extract of Passiflora edulis and piceatannol in vitro. Molecules, 27(13), 4064.

Article  Google Scholar 

Eynaudi, A., Diaz-Castro, F., Borquez, J. C., Brovo-Sagua, R., Parra, V., & Troncoso, R. (2021). Differential effects of oleic and palmitic acids on lipid droplet-mitochondria interaction in the hepatic cell line HepG2. Frontiers in Nutrition, 8, 775382.

Article  Google Scholar 

Woonnoi, W., Suttithumsatid, W., Muneerungsee, N., Saetan, J., Tanasawet, S., & Sukketsiri, W. (2023). Sangyod rice extract inhibits adipocyte growth and differentiation via mTOR, Akt, and AMPK pathways. Journal of Functional Foods, 111, 105913.

Article  CAS  Google Scholar 

Sukketsiri, W., Tanasawet, S., Moolsap, F., Tantisira, M. H., Hutamekalin, P., & Tipmanee, V. (2019). ECa 233 suppresses LPS-induced proinflammatory responses in macrophages via suppressing ERK1/2, p38 MAPK and Akt pathways. Biological and Pharmaceutical Bulletin, 42(8), 1358–1365.

Article  CAS  Google Scholar 

Suttithumsatid, W., Sukketsiri, W., & Panichayupakaranant, P. (2023). Cannabinoids and standardized cannabis extracts inhibit migration, invasion, and induce apoptosis in MCF-7 cells through FAK/MAPK/Akt/NF-κB signaling. Toxicology in Vitro, 93, 105667.

Article  CAS  Google Scholar 

Yamamoto, T., Sato, A., Takai, Y., Yoshimori, A., Umehara, M., Ogino, Y., Inada, M., Shimada, N., Nishida, A., & Ichida, R. (2019). Effect of piceatannol-rich passion fruit seed extract on human glyoxalase I–mediated cancer cell growth. Biochemistry and Biophysics Reports, 20, 100684.

Article  Google Scholar 

Silva, G. C., Rodrigues, R. A., & Bottoli, C. B. (2021). Passion fruit seed extract enriched in piceatannol obtained by microwave-assisted extraction. Sustainable Chemistry and Pharmacy, 22, 100472.

Article  CAS  Google Scholar 

Kristanti, D., & Purnawati, S. (2023). The effects of passion fruit (Passiflora Edulis) seed extract for health benefit. Jurnal Penelitian Pendidikan IPA, 9, 1241–1248.

Article  Google Scholar 

Arroyave-Ospina, J. C., Wu, Z., Geng, Y., & Moshage, H. (2021). Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy. Antioxidants, 10(2), 174.

Article  CAS  Google Scholar 

Guo, Y., Zhang, X., Zhao, Z., Lu, H., Ke, B., Ye, X., Wu, B., & Ye, J. (2020). NF-κB/HDAC1/SREBP1c pathway mediates the inflammation signal in progression of hepatic steatosis. Acta Pharmaceutica Sinica B, 10(5), 825–836.

Article  CAS  Google Scholar 

Rafaqat, S., Gluscevic, S., Mercantepe, F., Rafaqat, S., & Klisic, A. (2024). Interleukins: Pathogenesis in non-alcoholic fatty liver disease. Metabolites, 14(3), 153.

Article  CAS  Google Scholar 

Allameh, A., Niayesh-Mehr, R., Aliarab, A., Sebastiani, G., & Pantopoulos, K. (2023). Oxidative stress in liver pathophysiology and disease. Antioxidants, 12(9), 1653.

Article  CAS  Google Scholar 

Chen, Z., Tian, R., She, Z., Cai, J., & Li, H. (2020). Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biology and Medicine, 152, 116–141.

Article  CAS  Google Scholar 

Hanchang, W., Woonnoi, W., Saetan, J., Suttithumsatid, W., Tanasawet, S., Sanprick, A., Moolsup, F., & Sukketsiri, W. (2024). Sangyod rice extract mitigates insulin resistance in HepG2 cells and hepatic steatosis in diabetic rats via AMPK/mTOR/MAPK signaling pathways. Food Bioscience, 61, 104662.

Article  CAS  Google Scholar 

Hussar, P. (2022). Apoptosis regulators bcl-2 and caspase-3. Encyclopedia, 2(4), 1624–1636.

Article  Google Scholar 

Thapaliya, S., Wree, A., Povero, D., Inzaugarat, M. E., Berk, M., Dixon, L., Papouchado, B. G., & Feldstein, A. E. (2014). Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH model. Digestive Diseases and Sciences, 59, 1197–1206.

Article  CAS  Google Scholar 

Ipsen, D. H., Lykkesfeldt, J., & Tveden-Nyborg, P. (2018). Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cellular and Molecular Life Sciences, 75, 3313–3327.

Article  CAS  Google Scholar 

Pei, K., Gui, T., Kan, D., Feng, H., Jin, Y., Yang, Y., Zhang, Q., Du, Z., Gai, Z., & Wu, J. (2020). An overview of lipid metabolism and nonalcoholic fatty liver disease. BioMed Research International, 2020(1), 4020249.

Article  Google Scholar 

Berlanga, A., Guiu-Jurado, E., Porras, J. A., & Auguet, T. (2014). Molecular pathways in non-alcoholic fatty liver disease. Clinical and Experimental Gastroenterology, 7, 221–239.

Google Scholar 

Ferre, P., & Foufelle, F. (2010). Hepatic steatosis: A role for de novo lipogenesis and the transcription factor SREBP‐1c. Diabetes, Obesity and Metabolism, 12, 83–92.

Article  CAS  Google Scholar 

Wang, Y., Yu, W., Li, S., Guo, D., He, J., & Wang, Y. (2022). Acetyl-CoA carboxylases and diseases. Frontiers in Oncology, 12, 836058.

Article  CAS  Google Scholar 

Montagner, A., Polizzi, A., Fouché, E., Ducheix, S., Lippi, Y., Lasserre, F., Barquissau, V., Régnier, M., Lukowicz, C., & Benhamed, F. (2016). Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut, 65(7), 1202–1214.

Article  CAS  Google Scholar 

Pawlak, M., Lefebvre, P., & Staels, B. (2015). Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology, 62(3), 720–733.

Article  CAS  Google Scholar 

Yang, H., Zhao, H., Ren, Z., Yi, X., Zhang, Q., Yang, Z., Kuang, Y., & Zhu, Y. (2022). Overexpression CPT1A reduces lipid accumulation via PPARα/CD36 axis to suppress the cell proliferation in ccRCC: CPT1A inhibits ccRCC cell proliferation via PPARα/CD36 axis. Acta Biochimica et Biophysica Sinica, 54(2), 220.

Article  CAS  Google Scholar 

Liu, G., Xu, J.-N., Liu, D., Ding, Q., Liu, M.-N., Chen, R., Fan, M., Zhang, Y., Zheng, C., & Zou, D.-J. (2016). Regulation of plasma lipid homeostasis by hepatic lipoprotein lipase in adult mice. Journal of Lipid Research, 57(7), 1155–1161.

Article  CAS  Google Scholar 

Jeyakumar, S. M., & Vajreswari, A. (2022). Stearoyl-CoA desaturase 1: A potential target for non-alcoholic fatty liver disease?-perspective on emerging experimental evidence. World Journal of Hepatology, 14(1), 168.

Article  Google Scholar 

Go, G.-w, & Mani, A. (2012). Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. The Yale Journal of Biology and Medicine, 85(1), 19–28.

CAS  Google Scholar 

Zhang, Y., Ma, K. L., Ruan, X. Z., & Liu, B. C. (2016). Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury. International Journal of Biological Sciences, 12(5), 569.

Article  CAS  Google Scholar 

Acosta-Martinez, M., & Cabail, M. Z. (2022). The PI3K/Akt pathway in meta-inflammation. International Journal of Molecular Sciences, 23(23), 15330.

Article  CAS  Google Scholar 

Mooli, R. G. R., Rodriguez, J., Takahashi, S., Solanki, S., Gonzalez, F. J., Ramakrishnan, S. K., & Shah, Y. M. (2021). Hypoxia via ERK signaling inhibits hepatic PPARα to promote fatty liver. Cellular and Molecular Gastroenterology and Hepatology, 12(2), 585–597.

Article  CAS  Google Scholar 

Miao, R., Fang, X., Wei, J.

Comments (0)

No login
gif