Nassir, F., Rector, R. S., Hammoud, G. M., & Ibdah, J. A. (2015). Pathogenesis and prevention of hepatic steatosis. Gastroenterology & Hepatology, 11(3), 167–175.
Takaki, A., Kawai, D., & Yamamoto, K. (2013). Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). International Journal of Molecular Sciences, 14(10), 20704–20728.
Wiering, L., Subramanian, P., & Hammerich, L. (2023). Hepatic stellate cells: Dictating outcome in nonalcoholic fatty liver disease. Cellular and Molecular Gastroenterology and Hepatology, 15(6), 1277–1292.
Angelico, F., Burattin, M., Alessandri, C., Del Ben, M., & Lirussi, F. (2007). Drugs improving insulin resistance for non-alcoholic fatty liver disease and/or non-alcoholic steatohepatitis. Cochrane Database of Systematic Reviews, 1, CD005166.
Lirussi, F., Azzalini, L., Orando, S., Orlando, R., & Angelico, F. (2007). Antioxidant supplements for non‐alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database of Systematic Reviews, 1, CD004996.
He, X., Luan, F., Yang, Y., Wang, Z., Zhao, Z., Fang, J., Wang, M., Zuo, M., & Li, Y. (2020). Passiflora edulis: An insight into current researches on phytochemistry and pharmacology. Frontiers in Pharmacology, 11, 617.
Sukketsiri, W., Daodee, S., Parhira, S., Malakul, W., Tunsophon, S., Sutthiwong, N., Tanasawet, S., & Chonpathompikunlert, P. (2023). Chemical characterization of Passiflora edulis extracts and their in vitro antioxidant, anti-inflammatory, anti-lipid activities, and ex-vivo vasodilation effect. Journal of King Saud University-Science, 35(1), 102431.
Chusongdam, S., Woonnoi, W., Moolsup, F., Aenglong, C., Chonpathompikunlert, P., Tanasawet, S., Saetan, J., & Sukketsiri, W. (2024). Suppression of inflammation in adipocyte‐macrophage coculture by passion fruit seed extract: Insights into the p38 and NF‐ҡB pathway. Advances in Pharmacological and Pharmaceutical Sciences, 2024(1), 7990333.
Dos Santos, F. A., Xavier, J. A., da Silva, F. C., Merlin, J. J., Goulart, M. O., & Rupasinghe, H. V. (2022). Antidiabetic, antiglycation, and antioxidant activities of ethanolic seed extract of Passiflora edulis and piceatannol in vitro. Molecules, 27(13), 4064.
Eynaudi, A., Diaz-Castro, F., Borquez, J. C., Brovo-Sagua, R., Parra, V., & Troncoso, R. (2021). Differential effects of oleic and palmitic acids on lipid droplet-mitochondria interaction in the hepatic cell line HepG2. Frontiers in Nutrition, 8, 775382.
Woonnoi, W., Suttithumsatid, W., Muneerungsee, N., Saetan, J., Tanasawet, S., & Sukketsiri, W. (2023). Sangyod rice extract inhibits adipocyte growth and differentiation via mTOR, Akt, and AMPK pathways. Journal of Functional Foods, 111, 105913.
Sukketsiri, W., Tanasawet, S., Moolsap, F., Tantisira, M. H., Hutamekalin, P., & Tipmanee, V. (2019). ECa 233 suppresses LPS-induced proinflammatory responses in macrophages via suppressing ERK1/2, p38 MAPK and Akt pathways. Biological and Pharmaceutical Bulletin, 42(8), 1358–1365.
Suttithumsatid, W., Sukketsiri, W., & Panichayupakaranant, P. (2023). Cannabinoids and standardized cannabis extracts inhibit migration, invasion, and induce apoptosis in MCF-7 cells through FAK/MAPK/Akt/NF-κB signaling. Toxicology in Vitro, 93, 105667.
Yamamoto, T., Sato, A., Takai, Y., Yoshimori, A., Umehara, M., Ogino, Y., Inada, M., Shimada, N., Nishida, A., & Ichida, R. (2019). Effect of piceatannol-rich passion fruit seed extract on human glyoxalase I–mediated cancer cell growth. Biochemistry and Biophysics Reports, 20, 100684.
Silva, G. C., Rodrigues, R. A., & Bottoli, C. B. (2021). Passion fruit seed extract enriched in piceatannol obtained by microwave-assisted extraction. Sustainable Chemistry and Pharmacy, 22, 100472.
Kristanti, D., & Purnawati, S. (2023). The effects of passion fruit (Passiflora Edulis) seed extract for health benefit. Jurnal Penelitian Pendidikan IPA, 9, 1241–1248.
Arroyave-Ospina, J. C., Wu, Z., Geng, Y., & Moshage, H. (2021). Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy. Antioxidants, 10(2), 174.
Guo, Y., Zhang, X., Zhao, Z., Lu, H., Ke, B., Ye, X., Wu, B., & Ye, J. (2020). NF-κB/HDAC1/SREBP1c pathway mediates the inflammation signal in progression of hepatic steatosis. Acta Pharmaceutica Sinica B, 10(5), 825–836.
Rafaqat, S., Gluscevic, S., Mercantepe, F., Rafaqat, S., & Klisic, A. (2024). Interleukins: Pathogenesis in non-alcoholic fatty liver disease. Metabolites, 14(3), 153.
Allameh, A., Niayesh-Mehr, R., Aliarab, A., Sebastiani, G., & Pantopoulos, K. (2023). Oxidative stress in liver pathophysiology and disease. Antioxidants, 12(9), 1653.
Chen, Z., Tian, R., She, Z., Cai, J., & Li, H. (2020). Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radical Biology and Medicine, 152, 116–141.
Hanchang, W., Woonnoi, W., Saetan, J., Suttithumsatid, W., Tanasawet, S., Sanprick, A., Moolsup, F., & Sukketsiri, W. (2024). Sangyod rice extract mitigates insulin resistance in HepG2 cells and hepatic steatosis in diabetic rats via AMPK/mTOR/MAPK signaling pathways. Food Bioscience, 61, 104662.
Hussar, P. (2022). Apoptosis regulators bcl-2 and caspase-3. Encyclopedia, 2(4), 1624–1636.
Thapaliya, S., Wree, A., Povero, D., Inzaugarat, M. E., Berk, M., Dixon, L., Papouchado, B. G., & Feldstein, A. E. (2014). Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH model. Digestive Diseases and Sciences, 59, 1197–1206.
Ipsen, D. H., Lykkesfeldt, J., & Tveden-Nyborg, P. (2018). Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cellular and Molecular Life Sciences, 75, 3313–3327.
Pei, K., Gui, T., Kan, D., Feng, H., Jin, Y., Yang, Y., Zhang, Q., Du, Z., Gai, Z., & Wu, J. (2020). An overview of lipid metabolism and nonalcoholic fatty liver disease. BioMed Research International, 2020(1), 4020249.
Berlanga, A., Guiu-Jurado, E., Porras, J. A., & Auguet, T. (2014). Molecular pathways in non-alcoholic fatty liver disease. Clinical and Experimental Gastroenterology, 7, 221–239.
Ferre, P., & Foufelle, F. (2010). Hepatic steatosis: A role for de novo lipogenesis and the transcription factor SREBP‐1c. Diabetes, Obesity and Metabolism, 12, 83–92.
Wang, Y., Yu, W., Li, S., Guo, D., He, J., & Wang, Y. (2022). Acetyl-CoA carboxylases and diseases. Frontiers in Oncology, 12, 836058.
Montagner, A., Polizzi, A., Fouché, E., Ducheix, S., Lippi, Y., Lasserre, F., Barquissau, V., Régnier, M., Lukowicz, C., & Benhamed, F. (2016). Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut, 65(7), 1202–1214.
Pawlak, M., Lefebvre, P., & Staels, B. (2015). Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology, 62(3), 720–733.
Yang, H., Zhao, H., Ren, Z., Yi, X., Zhang, Q., Yang, Z., Kuang, Y., & Zhu, Y. (2022). Overexpression CPT1A reduces lipid accumulation via PPARα/CD36 axis to suppress the cell proliferation in ccRCC: CPT1A inhibits ccRCC cell proliferation via PPARα/CD36 axis. Acta Biochimica et Biophysica Sinica, 54(2), 220.
Liu, G., Xu, J.-N., Liu, D., Ding, Q., Liu, M.-N., Chen, R., Fan, M., Zhang, Y., Zheng, C., & Zou, D.-J. (2016). Regulation of plasma lipid homeostasis by hepatic lipoprotein lipase in adult mice. Journal of Lipid Research, 57(7), 1155–1161.
Jeyakumar, S. M., & Vajreswari, A. (2022). Stearoyl-CoA desaturase 1: A potential target for non-alcoholic fatty liver disease?-perspective on emerging experimental evidence. World Journal of Hepatology, 14(1), 168.
Go, G.-w, & Mani, A. (2012). Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. The Yale Journal of Biology and Medicine, 85(1), 19–28.
Zhang, Y., Ma, K. L., Ruan, X. Z., & Liu, B. C. (2016). Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury. International Journal of Biological Sciences, 12(5), 569.
Acosta-Martinez, M., & Cabail, M. Z. (2022). The PI3K/Akt pathway in meta-inflammation. International Journal of Molecular Sciences, 23(23), 15330.
Mooli, R. G. R., Rodriguez, J., Takahashi, S., Solanki, S., Gonzalez, F. J., Ramakrishnan, S. K., & Shah, Y. M. (2021). Hypoxia via ERK signaling inhibits hepatic PPARα to promote fatty liver. Cellular and Molecular Gastroenterology and Hepatology, 12(2), 585–597.
Miao, R., Fang, X., Wei, J.
Comments (0)