Li, Z., Zhang, Z., Ren, Y., Wang, Y., Fang, J., Yue, H., Ma, S., & Guan, F. (2021). Aging and age‐related diseases: From mechanisms to therapeutic strategies. Biogerontology, 22(2), 165–187. https://doi.org/10.1007/s10522-021-09910-5.
Article PubMed PubMed Central Google Scholar
Li, Y., Tian, X., Luo, J., Bao, T., Wang, S., & Wu, X. (2024). Molecular mechanisms of aging and anti-aging strategies. Cell Communication and Signaling, 22(1), 285 https://doi.org/10.1186/s12964-024-01663-1.
Article PubMed PubMed Central CAS Google Scholar
Gregg, E. W., Chen, H., Wagenknecht, L. E., Clark, J. M., Delahanty, L. M., Bantle, J., Pownall, H. J., Johnson, K. C., Safford, M. M., Kitabchi, A. E., Pi-Sunyer, F. X., Wing, R. R., Bertoni, A. G., & Look AHEAD Research Group. (2012). Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA, 308(23), 2489 https://doi.org/10.1001/jama.2012.67929. for the.
Article PubMed PubMed Central CAS Google Scholar
Asejeje, F. O., & Ogunro, O. B. (2024). Deciphering the mechanisms, biochemistry, physiology, and social habits in the process of aging. Archives of Gerontology and Geriatrics Plus, 1(1), 100003 https://doi.org/10.1016/j.aggp.2023.100003.
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039.
Article PubMed PubMed Central CAS Google Scholar
Rowe, J. W., & Kahn, R. L. (2015). Successful aging 2.0: Conceptual expansions for the 21st century. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 70(4), 593–596. https://doi.org/10.1093/geronb/gbv025.
Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 7(1), 391 https://doi.org/10.1038/s41392-022-01251-0.
Article PubMed PubMed Central CAS Google Scholar
Umbayev, B., Askarova, S., Almabayeva, A., Saliev, T., Masoud, A.-R., & Bulanin, D. (2020). Galactose-induced skin aging: The role of oxidative stress. Oxidative Medicine and Cellular Longevity, 2020, 1–15. https://doi.org/10.1155/2020/7145656.
Wang, S., Zhang, X., Ke, Z., Wen, X., Li, W., Liu, W., Zhuang, X.-D., & Liao, L. (2022). D‐galactose‐induced cardiac ageing: A review of model establishment and potential interventions. Journal of Cellular and Molecular Medicine, 26(21), 5335–5359. https://doi.org/10.1111/jcmm.17580.
Article PubMed PubMed Central Google Scholar
Azman, K. F., Safdar, A., & Zakaria, R. (2021). D-galactose-induced liver aging model: Its underlying mechanisms and potential therapeutic interventions. Experimental Gerontology, 150, 111372 https://doi.org/10.1016/j.exger.2021.111372.
Article PubMed CAS Google Scholar
Maldonado, E., Morales-Pison, S., Urbina, F., & Solari, A. (2023). Aging hallmarks and the role of oxidative stress. Antioxidants, 12(3), 651 https://doi.org/10.3390/antiox12030651.
Article PubMed PubMed Central CAS Google Scholar
Yu, M., Zhang, H., Wang, B., Zhang, Y., Zheng, X., Shao, B., Zhuge, Q., & Jin, K. (2021). Key signaling pathways in aging and potential interventions for healthy aging. Cells, 10(3), 660 https://doi.org/10.3390/cells10030660.
Article PubMed PubMed Central CAS Google Scholar
Cencioni, C., Spallotta, F., Martelli, F., Valente, S., Mai, A., Zeiher, A., & Gaetano, C. (2013). Oxidative stress and epigenetic regulation in ageing and age-related diseases. International Journal of Molecular Sciences, 14(9), 17643–17663. https://doi.org/10.3390/ijms140917643.
Article PubMed PubMed Central CAS Google Scholar
Chen, Y., Hu, Y., Zhou, X., Zhao, Z., Yu, Q., Chen, Z., Wang, Y., Xu, P., Yu, Z., Guo, C., Zhang, X., & Shi, Y. (2022). Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing γδ T cells. Cell and Tissue Research, 388(3), 549–563. https://doi.org/10.1007/s00441-022-03616-x.
Article PubMed CAS Google Scholar
Grune, T., Jung, T., Merker, K., & Davies, K. J. A. (2004). Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. The International Journal of Biochemistry & Cell Biology, 36(12), 2519–2530. https://doi.org/10.1016/j.biocel.2004.04.020.
Schmucker, D. L. (2005). Age-related changes in liver structure and function: Implications for disease? Experimental Gerontology, 40(8–9), 650–659. https://doi.org/10.1016/j.exger.2005.06.009.
Article PubMed CAS Google Scholar
Radonjić, T., Dukić, M., Jovanović, I., Zdravković, M., Mandić, O., Popadić, V., Nikolić, N., Klašnja, S., Divac, A., Todorović, Z., & Branković, M. (2022). Aging of liver in its different diseases. International Journal of Molecular Sciences, 23(21), 13085 https://doi.org/10.3390/ijms232113085.
Article PubMed PubMed Central CAS Google Scholar
Jiang, M., Zheng, Z., Wang, X., Chen, Y., Qu, J., Ding, Q., Zhang, W., Liu, Y.-S., Yang, J., Tang, W., Hou, Y., He, J., Wang, L., Huang, P., Li, L.-C., He, Z., Gao, Q., Lu, Q., Wei, L., & Wang, Y. (2024). A biomarker framework for liver aging: The Aging Biomarker Consortium consensus statement. Life Medicine, 3(1), lnae004 https://doi.org/10.1093/lifemedi/lnae004.
Article PubMed PubMed Central Google Scholar
Stahl, E. C., Haschak, M. J., Popovic, B., & Brown, B. N. (2018). Macrophages in the aging liver and age-related liver disease. Frontiers in Immunology, 9, 2795 https://doi.org/10.3389/fimmu.2018.02795.
Article PubMed PubMed Central CAS Google Scholar
Nivukoski, U., Niemelä, M., Bloigu, A., Bloigu, R., Aalto, M., Laatikainen, T., & Niemelä, O. (2020). Combined effects of lifestyle risk factors on fatty liver index. BMC Gastroenterology, 20(1), 109 https://doi.org/10.1186/s12876-020-01270-7.
Article PubMed PubMed Central CAS Google Scholar
Ling, Z., Zhang, C., He, J., Ouyang, F., Qiu, D., Li, L., Li, Y., Li, X., Duan, Y., Luo, D., Xiao, S., & Shen, M. (2023). Association of healthy lifestyles with non-alcoholic fatty liver disease: A prospective Cohort Study in chinese government employees. Nutrients, 15(3), 604 https://doi.org/10.3390/nu15030604.
Article PubMed PubMed Central Google Scholar
Shackelford, D. B., & Shaw, R. J. (2009). The LKB1–AMPK pathway: Metabolism and growth control in tumour suppression. Nature Reviews Cancer, 9(8), 563–575. https://doi.org/10.1038/nrc2676.
Article PubMed PubMed Central CAS Google Scholar
Giardiello, F. M., Brensinger, J. D., Tersmette, A. C., Goodman, S. N., Petersen, G. M., Booker, S. V., Cruz-Correa, M., & Offerhaus, J. A. (2000). Very high risk of cancer in familial Peutz–Jeghers syndrome. Gastroenterology, 119(6), 1447–1453. https://doi.org/10.1053/gast.2000.20228.
Article PubMed CAS Google Scholar
Ylikorkala, A., Rossi, D. J., Korsisaari, N., Luukko, K., Alitalo, K., Henkemeyer, M., & Mäkelä, T. P. (2001). Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science, 293(5533), 1323–1326. https://doi.org/10.1126/science.1062074.
Article PubMed CAS Google Scholar
Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology, 13(9), 1016–1023. https://doi.org/10.1038/ncb2329.
Article PubMed PubMed Central CAS Google Scholar
Keipert, S., Ost, M., Johann, K., Imber, F., Jastroch, M., van Schothorst, E. M., Keijer, J., & Klaus, S. (2014). Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. American Journal of Physiology-Endocrinology and Metabolism, 306(5), E469–E482. https://doi.org/10.1152/ajpendo.00330.2013.
Comments (0)